
Streaming Data Solutions on
AWS

First Published September 13, 2017

Updated September 1, 2021

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Introduction .. 1

Real-time and near-real-time application scenarios.. 1

Difference between batch and stream processing .. 2

Stream processing challenges .. 2

Streaming data solutions: examples ... 2

Scenario 1: Internet offering based on location... 3

Processing streams of data with AWS Lambda .. 5

Summary .. 6

Scenario 2: Near-real-time data for security teams .. 6

Amazon Kinesis Data Firehose ... 7

Summary .. 12

Scenario 3: Preparing clickstream data for data insights processes 13

AWS Glue and AWS Glue streaming .. 14

Amazon DynamoDB ... 15

Amazon SageMaker and Amazon SageMaker service endpoints 16

Inferring data insights in real time .. 16

Summary .. 17

Scenario 4: Device sensors real-time anomaly detection and notifications 17

Amazon Kinesis Data Analytics ... 19

Summary .. 21

Scenario 5: Real time telemetry data monitoring with Apache Kafka 22

Amazon Managed Streaming for Apache Kafka (Amazon MSK) 23

Amazon EMR with Spark Streaming ... 25

Summary .. 27

Conclusion ... 28

Contributors ... 28

Document versions .. 28

Abstract

Data engineers, data analysts, and big data developers are looking to process and

analyze their data in real-time, so their companies can learn about what their

customers, applications, and products are doing right now, and react promptly. This

whitepaper describes how services such as Amazon Kinesis Data Streams, Amazon

Kinesis Data Firehose, Amazon EMR, Amazon Kinesis Data Analytics, Amazon

Managed Streaming for Apache Kafka (Amazon MSK), and other services can be used

to implement real-time applications, and provides common design patterns using these

services.

https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/kinesis/data-firehose/
https://aws.amazon.com/kinesis/data-firehose/
https://aws.amazon.com/emr/
https://aws.amazon.com/kinesis/data-analytics/
https://aws.amazon.com/msk/
https://aws.amazon.com/msk/

Amazon Web Services Streaming Data Solutions on AWS

 1

Introduction

Businesses today receive data at massive scale and speed due to the explosive growth

of data sources that continuously generate streams of data. Whether it is log data from

application servers, clickstream data from websites and mobile apps, or telemetry data

from Internet of Things (IoT) devices, it all contains information that can help you learn

about what your customers, applications, and products are doing right now.

Having the ability to process and analyze this data in real-time is essential to do things

such as continuously monitor your applications to ensure high service uptime and

personalize promotional offers and product recommendations. Real-time and near-real-

time processing can also make other common use cases, such as website analytics and

machine learning, more accurate and actionable by making data available to these

applications in seconds or minutes instead of hours or days.

Real-time and near-real-time application scenarios

You can use streaming data services for real-time and near-real-time applications such

as application monitoring, fraud detection, and live leaderboards. Real-time use cases

require millisecond end-to-end latencies – from ingestion, to processing, all the way to

emitting the results to target data stores and other systems. For example, Netflix uses

Amazon Kinesis Data Streams to monitor the communications between all its

applications so it can detect and fix issues quickly, ensuring high service uptime and

availability to its customers. While the most commonly applicable use case is

application performance monitoring, there are an increasing number of real-time

applications in ad tech, gaming, and IoT that fall under this category.

Common near-real-time use cases include analytics on data stores for data science and

machine learning (ML). You can use streaming data solutions to continuously load real-

time data into your data lakes. You can then update ML models more frequently as new

data becomes available, ensuring accuracy and reliability of the outputs. For example,

Zillow uses Kinesis Data Streams to collect public record data and multiple listing

service (MLS) listings, and then provide home buyers and sellers with the most up-to-

date home value estimates in near-real-time. ZipRecruiter uses Amazon MSK for their

event logging pipelines, which are critical infrastructure components that collect, store,

and continually process over six billion events per day from the ZipRecruiter

employment marketplace.

https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/msk/

Amazon Web Services Streaming Data Solutions on AWS

 2

Difference between batch and stream processing

You need a different set of tools to collect, prepare, and process real-time streaming

data than those tools that you have traditionally used for batch analytics. With traditional

analytics, you gather the data, load it periodically into a database, and analyze it hours,

days, or weeks later. Analyzing real-time data requires a different approach. Stream

processing applications process data continuously in real-time, even before it is stored.

Streaming data can come in at a blistering pace and data volumes can vary up and

down at any time. Stream data processing platforms have to be able to handle the

speed and variability of incoming data and process it as it arrives, often millions to

hundreds of millions of events per hour.

Stream processing challenges

Processing real-time data as it arrives can enable you to make decisions much faster

than is possible with traditional data analytics technologies. However, building and

operating your own custom streaming data pipelines is complicated and resource-

intensive:

• You have to build a system that can cost-effectively collect, prepare, and transmit

data coming simultaneously from thousands of data sources.

• You need to fine-tune the storage and compute resources so that data is batched

and transmitted efficiently for maximum throughput and low latency.

• You have to deploy and manage a fleet of servers to scale the system so you

can handle the varying speeds of data you are going to throw at it.

Version upgrade is a complex and costly process. After you have built this platform, you

have to monitor the system and recover from any server or network failures by catching

up on data processing from the appropriate point in the stream, without creating

duplicate data. You also need a dedicated team for infrastructure management. All of

this takes valuable time and money and, at the end of the day, most companies just

never get there and must settle for the status quo and operate their business with

information that is hours or days old.

Streaming data solutions: examples

To better understand how organizations are doing real-time data processing using AWS

services, this whitepaper uses four examples. Each example reviews a scenario and

Amazon Web Services Streaming Data Solutions on AWS

 3

discusses in detail how AWS real-time data streaming services are used to solve the

problem.

Scenario 1: Internet offering based on location

Company InternetProvider provides internet services with a variety of bandwidth options

to users across the world. When a user signs up for internet, company InternetProvider

provides the user with different bandwidth options based on user’s geographic location.

Given these requirements, company InternetProvider implemented an Amazon Kinesis

Data Streams to consume user details and location. The user details and location are

enriched with different bandwidth options prior to publishing back to the application.

AWS Lambda enables this real-time enrichment.

Processing streams of data with AWS Lambda

Amazon Kinesis Data Streams

Amazon Kinesis Data Streams enables you to build custom, real-time applications using

popular stream processing frameworks and load streaming data into many different data

stores. A Kinesis stream can be configured to continuously receive events from

hundreds of thousands of data producers delivered from sources like website click-

streams, IoT sensors, social media feeds and application logs. Within milliseconds, data

is available to be read and processed by your application.

When implementing a solution with Kinesis Data Streams, you create custom data-

processing applications known as Kinesis Data Streams applications. A typical Kinesis

Data Streams application reads data from a Kinesis stream as data records.

Data put into Kinesis Data Streams is ensured to be highly available and elastic, and is

available in milliseconds. You can continuously add various types of data such as

clickstreams, application logs, and social media to a Kinesis stream from hundreds of

thousands of sources. Within seconds, the data will be available for your Kinesis

Applications to read and process from the stream.

https://aws.amazon.com/lambda/
https://aws.amazon.com/kinesis/data-streams/
https://www.amazonaws.cn/en/kinesis/data-streams/faqs/#kinesisapp
https://www.amazonaws.cn/en/kinesis/data-streams/faqs/#kinesisapp

Amazon Web Services Streaming Data Solutions on AWS

 4

Amazon Kinesis Data Streams is a fully managed streaming data service. It manages

the infrastructure, storage, networking, and configuration needed to stream your data at

the level of your data throughput.

Sending data to Amazon Kinesis Data Streams

There are several ways to send data to Kinesis Data Streams, providing flexibility in the

designs of your solutions.

• You can write code utilizing one of the AWS SDKs that are supported by multiple

popular languages.

• You can use the Amazon Kinesis Agent, a tool for sending data to Kinesis Data

Streams.

The Amazon Kinesis Producer Library (KPL) simplifies the producer application

development by enabling developers to achieve high write throughput to one or more

Kinesis data streams.

The KPL is an easy to use, highly configurable library that you install on your hosts. It

acts as an intermediary between your producer application code and the Kinesis

Streams API actions. For more information about the KPL and its ability to produce

events synchronously and asynchronously with code examples, see Writing to your

Kinesis Data Stream Using the KPL

There are two different operations in the Kinesis Streams API that add data to a stream:

PutRecords and PutRecord. The PutRecords operation sends multiple records to

your stream per HTTP request while, PutRecord submits one record per HTTP

request. To achieve higher throughput for most applications, use PutRecords.

For more information about these APIs, see Adding Data to a Stream. The details for

each API operation can be found in the Amazon Kinesis Streams API Reference.

Processing data in Amazon Kinesis Data Streams

To read and process data from Kinesis streams, you need to create a consumer

application. There are varied ways to create consumers for Kinesis Data Streams.

Some of these approaches include using Amazon Kinesis Data Analytics to analyze

streaming data using KCL, using AWS Lambda, AWS Glue streaming ETL jobs, and

using the Kinesis Data Streams API directly.

Consumer applications for Kinesis Streams can be developed using the KCL, which

helps you consume and process data from Kinesis Streams. The KCL takes care of

https://aws.amazon.com/tools/
https://docs.aws.amazon.com/streams/latest/dev/writing-with-agents.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/kinesis-kpl-writing.html
https://docs.aws.amazon.com/streams/latest/dev/kinesis-kpl-writing.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-sdk.html#kinesis-using-sdk-java-add-data-to-stream
https://docs.aws.amazon.com/kinesis/latest/APIReference/Welcome.html
https://aws.amazon.com/kinesis/data-analytics/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html

Amazon Web Services Streaming Data Solutions on AWS

 5

many of the complex tasks associated with distributed computing such as load

balancing across multiple instances, responding to instance failures, checkpointing

processed records, and reacting to resharding. The KCL enables you to focus on the

writing record-processing logic. For more information on how to build your own KCL

application, see Using the Kinesis Client Library.

You can subscribe Lambda functions to automatically read batches of records off your

Kinesis stream and process them if records are detected on the stream. AWS Lambda

periodically polls the stream (once per second) for new records and when it detects new

records, it invokes the Lambda function passing the new records as parameters. The

Lambda function is only run when new records are detected. You can map a Lambda

function to a shared-throughput consumer (standard iterator)

You can build a consumer that uses a feature called enhanced fan-out when you

require dedicated throughput that you do not want to contend with other consumers that

are receiving data from the stream. This feature enables consumers to receive records

from a stream with throughput of up to two MB of data per second per shard.

For most cases, using Kinesis Data Analytics, KCL, AWS Glue, or AWS Lambda should

be used to process data from a stream. However, if you prefer, you can create a

consumer application from scratch using the Kinesis Data Streams API. The Kinesis

Data Streams API provides the GetShardIterator and GetRecords methods to

retrieve data from a stream.

In this pull model, your code extracts data directly from the shards of the stream. For

more information about writing your own consumer application using the API, see

Developing Custom Consumers with Shared Throughput Using the AWS SDK for Java.

Details about the API can be found in the Amazon Kinesis Streams API Reference.

Processing streams of data with AWS Lambda

AWS Lambda enables you to run code without provisioning or managing servers. With

Lambda, you can run code for virtually any type of application or backend service with

zero administration. Just upload your code, and Lambda takes care of everything

required to run and scale your code with high availability. You can set up your code to

automatically trigger from other AWS services, or call it directly from any web or mobile

app.

AWS Lambda integrates natively with Amazon Kinesis Data Streams. The polling,

checkpointing, and error handling complexities are abstracted when you use this native

https://docs.aws.amazon.com/streams/latest/dev/shared-throughput-kcl-consumers.html
https://docs.aws.amazon.com/streams/latest/dev/enhanced-consumers.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/Welcome.html
https://aws.amazon.com/lambda/faqs/

Amazon Web Services Streaming Data Solutions on AWS

 6

integration. This allows the Lambda function code to focus on business logic

processing.

You can map a Lambda function to a shared-throughput (standard iterator), or to a

dedicated-throughput consumer with enhanced fan-out. With a standard iterator,

Lambda polls each shard in your Kinesis stream for records using HTTP protocol. To

minimize latency and maximize read throughput, you can create a data stream

consumer with enhanced fan-out. Stream consumers in this architecture get a dedicated

connection to each shard without competing with other applications reading from the

same stream. Amazon Kinesis Data Streams pushes records to Lambda over HTTP/2.

By default, AWS Lambda invokes your function as soon as records are available in the

stream. To buffer the records for batch scenarios, you can implement a batch window

for up to five minutes at the event source. If your function returns an error, Lambda

retries the batch until processing succeeds or the data expires.

Summary

Company InternetProvider leveraged Amazon Kinesis Data Streams to stream user

details and location. The stream of record was consumed by AWS Lambda to enrich the

data with bandwidth options stored in the function’s library. After the enrichment, AWS

Lambda published the bandwidth options back to the application. Amazon Kinesis Data

Streams and AWS Lambda handled provisioning and management of servers, enabling

Company InternetProvider to focus more on business application development.

Scenario 2: Near-real-time data for security

teams

Company ABC2Badge provides sensors and badges for corporate or large-scale events

such as AWS re:Invent. Users sign up for the event and receive unique badges that the

sensors pick up across the campus. As users pass by a sensor, their anonymized

information is recorded into a relational database.

In an upcoming event, due to the high volume of attendees, ABC2Badge has been

requested by the event security team to gather data for the most concentrated areas of

the campus every 15 minutes. This will give the security team enough time to react and

disperse security personal proportionally to concentrated areas. Given this new

requirement from the security team and the inexperience of building a streaming

https://reinvent.awsevents.com/

Amazon Web Services Streaming Data Solutions on AWS

 7

solution, to process date in near-real-time, ABC2Badge is looking for a simple yet

scalable and reliable solution.

Their current data warehouse solution is Amazon Redshift. While reviewing the features

of the Amazon Kinesis services, they recognized that Amazon Kinesis Data Firehose

can receive a stream of data records, batch the records based on buffer size and/or

time interval, and insert them into Amazon Redshift. They created a Kinesis Data

Firehose delivery stream and configured it so it would copy data to their Amazon

Redshift tables every five minutes. As part of this new solution, they used the Amazon

Kinesis Agent on their servers. Every five minutes, Kinesis Data Firehose loads data

into Amazon Redshift, where the business intelligence (BI) team is enabled to perform

its analysis and send the data to the security team every 15 minutes.

New solution using Amazon Kinesis Data Firehose

Amazon Kinesis Data Firehose

Amazon Kinesis Data Firehose is the easiest way to load streaming data into AWS. It

can capture, transform, and load streaming data into Amazon Kinesis Data Analytics,

Amazon Simple Storage Service (Amazon S3), Amazon Redshift, Amazon

Elasticsearch Service (Amazon ES), and Splunk. Additionally, Kinesis Data Firehose

can load streaming data into any custom HTTP endpoint or HTTP endpoints owned by

supported third-party service providers.

Kinesis Data Firehose enables near-real-time analytics with existing business

intelligence tools and dashboards that you’re already using today. It’s a fully managed

serverless service that automatically scales to match the throughput of your data and

requires no ongoing administration. Kinesis Data Firehose can batch, compress, and

https://aws.amazon.com/redshift/
https://aws.amazon.com/kinesis/data-firehose
https://aws.amazon.com/kinesis/data-analytics/
https://aws.amazon.com/s3/
https://aws.amazon.com/redshift/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/elasticsearch-service/
https://www.splunk.com/
https://docs.aws.amazon.com/firehose/latest/dev/create-destination.html

Amazon Web Services Streaming Data Solutions on AWS

 8

encrypt the data before loading, minimizing the amount of storage used at the

destination and increasing security. It can also transform the source data using AWS

Lambda and deliver the transformed data to destinations. You configure your data

producers to send data to Kinesis Data Firehose, which automatically delivers the data

to the destination that you specify.

Sending data to a Firehose delivery stream

To send data to your delivery stream, there are several options. AWS offers SDKs for

many popular programming languages, each of which provides APIs for Amazon

Kinesis Data Firehose. AWS has a utility to help send data to your delivery stream.

Kinesis Data Firehose has been integrated with other AWS services to send data

directly from those services into your delivery stream.

Using Amazon Kinesis agent

Amazon Kinesis agent is a standalone software application that continuously monitors a

set of log files for new data to be sent to the delivery stream. The agent automatically

handles file rotation, checkpointing, retries upon failures, and emits Amazon

CloudWatch metrics for monitoring and troubleshooting of the delivery stream.

Additional configurations, such data pre-processing, monitoring multiple file directories,

and writing to multiple delivery streams, can be applied to the agent.

The agent can be installed on Linux or Windows-based servers such as web servers,

log servers, and database servers. Once the agent is installed, you simply specify the

log files it will monitor and the delivery stream it will send to. The agent will durably and

reliably send new data to the delivery stream.

Using API with AWS SDK and AWS services as a source

The Kinesis Data Firehose API offers two operations for sending data to your delivery

stream. PutRecord sends one data record within one call. PutRecordBatch can send

multiple data records within one call, and can achieve higher throughput per producer.

In each method, you must specify the name of the delivery stream and the data record,

or array of data records, when using this method. For more information and sample

code for the Kinesis Data Firehose API operations, see Writing to a Firehose Delivery

Stream Using the AWS SDK.

Kinesis Data Firehose also runs with Kinesis Data Streams, CloudWatch Logs,

CloudWatch Events, Amazon Simple Notification Service (Amazon SNS), Amazon API

https://aws.amazon.com/kinesis/data-firehose/
https://aws.amazon.com/kinesis/data-firehose/
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-agents.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-sdk.html
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-sdk.html
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-kinesis-streams.html
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-cloudwatch-logs.html
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-cloudwatch-events.html
https://aws.amazon.com/sns/
https://aws.amazon.com/api-gateway/

Amazon Web Services Streaming Data Solutions on AWS

 9

Gateway, and AWS IoT. You can scalably and reliably send your streams of data, logs,

events, and IoT data directly into a Kinesis Data Firehose destination.

Processing data before delivery to destination

In some scenarios, you might want to transform or enhance your streaming data before

it is delivered to its destination. For example, data producers might send unstructured

text in each data record, and you need to transform it to JSON before delivering it to

Amazon ES. Or you might want to convert the JSON data into a columnar file format

such as Apache Parquet or Apache ORC before storing the data in Amazon S3.

Kinesis Data Firehose has built-in data format conversion capability. With this, you can

easily convert your streams of JSON data into Apache Parquet or Apache ORC file

formats.

Data transformation flow

To enable streaming data transformations, Kinesis Data Firehose uses a. Lambda

function that you create to transform your data. Kinesis Data Firehose buffers incoming

data to a specified buffer size for the function and then invokes the specified Lambda

function asynchronously. The transformed data is sent from Lambda to Kinesis Data

Firehose, and Kinesis Data Firehose delivers the data to the destination.

Data format conversion

You can also enable Kinesis Data Firehose data format conversion, which will convert

your stream of JSON data to Apache Parquet or Apache ORC. This feature can only

convert JSON to Apache Parquet or Apache ORC. If you have data that is in CSV, you

can transform that data via a Lambda function to JSON, and then apply the data format

conversion.

Data delivery

As a near-real-time delivery stream, Kinesis Data Firehose buffers incoming data. After

your delivery stream’s buffering thresholds have been reached, your data is delivered to

the destination you’ve configured. There are some differences in how Kinesis Data

Firehose delivers data to each destination, which this paper reviews in the following

sections.

https://aws.amazon.com/api-gateway/
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-iot.html
https://aws.amazon.com/elasticsearch-service/
https://parquet.apache.org/
https://orc.apache.org/
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/firehose/latest/dev/record-format-conversion.html
https://docs.aws.amazon.com/firehose/latest/dev/data-transformation.html
https://docs.aws.amazon.com/firehose/latest/dev/record-format-conversion.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-deliver.html#s3-object-name

Amazon Web Services Streaming Data Solutions on AWS

 10

Amazon S3

Amazon S3 is object storage with a simple web service interface to store and retrieve

any amount of data from anywhere on the web. It’s designed to deliver 99.999999999%

durability, and scale past trillions of objects worldwide.

Data delivery to Amazon S3

For data delivery to S3, Kinesis Data Firehose concatenates multiple incoming records

based on the buffering configuration of your delivery stream, and then delivers them to

Amazon S3 as an S3 object. The frequency of data delivery to S3 is determined by the

S3 buffer size (1 MB to 128 MB) or buffer interval (60 seconds to 900 seconds),

whichever comes first.

Data delivery to your S3 bucket might fail for various reasons. For example, the bucket

might not exist anymore, or the AWS Identity and Access Management (IAM) role that

Kinesis Data Firehose assumes might not have access to the bucket. Under these

conditions, Kinesis Data Firehose keeps retrying for up to 24 hours until the delivery

succeeds. The maximum data storage time of Kinesis Data Firehose is 24 hours. If data

delivery fails for more than 24 hours, your data is lost.

Amazon Redshift

Amazon Redshift is a fast, fully managed data warehouse that makes it simple and

cost-effective to analyze all your data using standard SQL and your existing BI tools. It

allows you to run complex analytic queries against petabytes of structured data using

sophisticated query optimization, columnar storage on high-performance local disks,

and massively parallel query running.

Data delivery to Amazon Redshift

For data delivery to Amazon Redshift, Kinesis Data Firehose first delivers incoming data

to your S3 bucket in the format described earlier. Kinesis Data Firehose then issues an

Amazon Redshift COPY command to load the data from your S3 bucket to your Amazon

Redshift cluster.

The frequency of data COPY operations from S3 to Amazon Redshift is determined by

how fast your Amazon Redshift cluster can finish the COPY command. For an Amazon

Redshift destination, you can specify a retry duration (0–7200 seconds) when creating a

delivery stream to handle data delivery failures. Kinesis Data Firehose retries for the

specified time duration and skips that particular batch of S3 objects if unsuccessful. The

https://aws.amazon.com/s3/
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://aws.amazon.com/redshift/

Amazon Web Services Streaming Data Solutions on AWS

 11

skipped objects' information is delivered to your S3 bucket as a manifest file in the

errors/ folder, which you can use for manual backfill.

Following is an architecture diagram of Kinesis Data Firehose to Amazon Redshift data

flow. Although this data flow is unique to Amazon Redshift, Kinesis Data Firehose

follows similar patterns for the other destination targets.

Data flow from Kinesis Data Firehose to Amazon Redshift

Amazon Elasticsearch Service (Amazon ES)

Amazon ES is a fully managed service that delivers the Elasticsearch easy-to-use APIs

and real-time capabilities along with the availability, scalability, and security required by

production workloads. Amazon ES makes it easy to deploy, operate, and scale

Elasticsearch for log analytics, full text search, and application monitoring.

Data delivery to Amazon ES

For data delivery to Amazon ES, Kinesis Data Firehose buffers incoming records based

on the buffering configuration of your delivery stream, and then generates an

Elasticsearch bulk request to index multiple records to your Elasticsearch cluster. The

frequency of data delivery to Amazon ES is determined by the Elasticsearch buffer size

(1 MB to 100 MB) and buffer interval (60 seconds to 900 seconds) values, whichever

comes first.

For the Amazon ES destination, you can specify a retry duration (0–7200 seconds)

when creating a delivery stream. Kinesis Data Firehose retries for the specified time

duration, and then skips that particular index request. The skipped documents are

delivered to your S3 bucket in the elasticsearch_failed/ folder, which you can use

for manual backfill.

Amazon Kinesis Data Firehose can rotate your Amazon ES index based on a time

duration. Depending on the rotation option you choose (NoRotation, OneHour,

https://aws.amazon.com/elasticsearch-service/

Amazon Web Services Streaming Data Solutions on AWS

 12

OneDay, OneWeek, or OneMonth), Kinesis Data Firehose appends a portion of the

Coordinated Universal Time (UTC) arrival timestamp to your specified index name.

Custom HTTP endpoint or supported third-party service provider

Kinesis Data Firehose can send data either to Custom HTTP endpoints or supported

third-party providers such as Datadog, Dynatrace, LogicMonitor, MongoDB, New Relic,

Splunk, and Sumo Logic.

Data delivery to custom HTTP endpoints

For Kinesis Data Firehose to successfully deliver data to custom HTTP endpoints, these

endpoints must accept requests and send responses using certain Kinesis Data

Firehose request and response formats.

When delivering data to an HTTP endpoint owned by a supported third-party service

provider, you can use the integrated AWS Lambda service to create a function to

transform the incoming record(s) to the format that matches the format the service

provider's integration is expecting.

For data delivery frequency, each service provider has a recommended buffer size.

Work with your service provider for more information on their recommended buffer size.

For data delivery failure handling, Kinesis Data Firehose establishes a connection with

the HTTP endpoint first by waiting for a response from the destination. Kinesis Data

Firehose continues to establish connection, until the retry duration expires. After that,

Kinesis Data Firehose considers it a data delivery failure and backs up the data to your

S3 bucket.

Summary

Kinesis Data Firehose can persistently deliver your streaming data to a supported

destination. It’s a fully-managed solution, requiring little or no development. For

Company ABC2Badge, using Kinesis Data Firehose was a natural choice. They were

already using Amazon Redshift as their data warehouse solution. Because their data

sources continuously wrote to transaction logs, they were able to leverage the Amazon

Kinesis Agent to stream that data without writing any additional code. Now that

company ABC2Badge has created a stream of sensor records and are receiving these

records via Kinesis Data Firehose, they can use this as the basis for the security team

use case.

Amazon Web Services Streaming Data Solutions on AWS

 13

Scenario 3: Preparing clickstream data for data

insights processes

Fast Sneakers is a fashion boutique with a focus on trendy sneakers. The price of any

given pair of shoes can go up or down depending on inventory and trends, such as what

celebrity or sports star was spotted wearing brand name sneakers on TV last night. It is

important for Fast Sneakers to track and analyze those trends to maximize their

revenue.

Fast Sneakers does not want to introduce additional overhead into the project with new

infrastructure to maintain. They want to be able to split the development to the

appropriate parties, where the data engineers can focus on data transformation and

their data scientists can work on their ML functionality independently.

To react quickly and automatically adjust prices according to demand, Fast Sneakers

streams significant events (like click-interest and purchasing data), transforming and

augmenting the event data and feeding it to a ML model. Their ML model is able to

determine if a price adjustment is required. This allows Fast Sneakers to automatically

modify their pricing to maximize profit on their products.

Fast Sneakers real-time price adjustments

This architecture diagram shows the real-time streaming solution Fast Sneakers created

utilizing Kinesis Data Streams, AWS Glue, and DynamoDB Streams. By taking

advantage of these services, they have a solution that is elastic and reliable without

Amazon Web Services Streaming Data Solutions on AWS

 14

needing to spend time on setting up and maintaining the supporting infrastructure. They

can spend their time on what brings value to their company by focusing on a streaming

extract, transform, load (ETL) job and their machine learning model.

To better understand the architecture and technologies that are used in their workload,

the following are some details of the services used.

AWS Glue and AWS Glue streaming

AWS Glue is a fully managed ETL service that you can use to catalog your data, clean

it, enrich it, and move it reliably between data stores. With AWS Glue, you can

significantly reduce the cost, complexity, and time spent creating ETL jobs. AWS Glue is

serverless, so there is no infrastructure to set up or manage. You pay only for the

resources consumed while your jobs are running.

Utilizing AWS Glue, you can create a consumer application with an AWS Glue

streaming ETL job. This enables you to utilize Apache Spark and other Spark-based

modules writing to consume and process your event data. The next section of this

document goes into more depth about this scenario.

AWS Glue Data Catalog

The AWS Glue Data Catalog contains references to data that is used as sources and

targets of your ETL jobs in AWS Glue. The AWS Glue Data Catalog is an index to the

location, schema, and runtime metrics of your data. You can use information in the Data

Catalog to create and monitor your ETL jobs. Information in the Data Catalog is stored

as metadata tables, where each table specifies a single data store. By setting up a

crawler, you can automatically assess numerous types of data stores, including

DynamoDB, S3, and Java Database Connectivity (JDBC) connected stores, extract

metadata and schemas, and then create table definitions in the AWS Glue Data

Catalog.

To work with Amazon Kinesis Data Streams in AWS Glue streaming ETL jobs, it is best

practice to define your stream in a table in an AWS Glue Data Catalog database. You

define a stream-sourced table with the Kinesis stream, one of the many formats

supported (CSV, JSON, ORC, Parquet, Avro or a customer format with Grok). You can

manually enter a schema, or you can leave this step to your AWS Glue job to determine

during runtime of the job.

https://aws.amazon.com/glue/
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html
https://docs.aws.amazon.com/glue/latest/dg/populate-data-catalog.html

Amazon Web Services Streaming Data Solutions on AWS

 15

AWS Glue streaming ETL job

AWS Glue runs your ETL jobs in an Apache Spark serverless environment. AWS Glue

runs these jobs on virtual resources that it provisions and manages in its own service

account. In addition to being able to run Apache Spark based jobs, AWS Glue provides

an additional level of functionality on top of Spark with DynamicFrames.

DynamicFrames are distributed tables that support nested data such as structures and

arrays. Each record is self-describing, designed for schema flexibility with semi-

structured data. A record in a DynamicFrame contains both data and the schema

describing the data. Both Apache Spark DataFrames and DynamicFrames are

supported in your ETL scripts, and you can convert them back and forth.

DynamicFrames provide a set of advanced transformations for data cleaning and ETL.

By using Spark Streaming in your AWS Glue Job, you can create streaming ETL jobs

that run continuously, and consume data from streaming sources like Amazon Kinesis

Data Streams, Apache Kafka, and Amazon MSK. The jobs can clean, merge, and

transform the data, then load the results into stores including Amazon S3, Amazon

DynamoDB, or JDBC data stores.

AWS Glue processes and writes out data in 100-second windows, by default. This

allows data to be processed efficiently, and permits aggregations to be performed on

data arriving later than expected. You can configure the window size by adjusting it to

accommodate the speed in response vs the accuracy of your aggregation. AWS Glue

streaming jobs use checkpoints to track the data that has been read from the Kinesis

Data Stream. For a walkthrough on creating a streaming ETL job in AWS Glue you can

refer to Adding Streaming ETL Jobs in AWS Glue

Amazon DynamoDB

Amazon DynamoDB is a key-value and document database that delivers single-digit

millisecond performance at any scale. It's a fully managed, multi-Region, multi-active,

durable database with built-in security, backup and restore, and in-memory caching for

internet-scale applications. DynamoDB can handle more than ten trillion requests per

day, and can support peaks of more than 20 million requests per second.

Change data capture for DynamoDB streams

A DynamoDB stream is an ordered flow of information about changes to items in a

DynamoDB table. When you enable a stream on a table, DynamoDB captures

information about every modification to data items in the table. DynamoDB runs on

https://aws.amazon.com/glue
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-dynamic-frame.html
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html
https://aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html

Amazon Web Services Streaming Data Solutions on AWS

 16

AWS Lambda so that you can create triggers—pieces of code that automatically

respond to events in DynamoDB streams. With triggers, you can build applications that

react to data modifications in DynamoDB tables.

When a stream is enabled on a table, you can associate the stream Amazon Resource

Name (ARN) with a Lambda function that you write. Immediately after an item in the

table is modified, a new record appears in the table's stream. AWS Lambda polls the

stream and invokes your Lambda function synchronously when it detects new stream

records.

Amazon SageMaker and Amazon SageMaker service

endpoints

Amazon SageMaker is a fully managed platform that enables developers and data

scientists with the ability to build, train, and deploy ML models quickly and at any scale.

SageMaker includes modules that can be used together or independently to build, train,

and deploy your ML models. With Amazon SageMaker service endpoints, you can

create managed hosted endpoint for real-time inference with a deployed model that you

developed within or outside of Amazon SageMaker.

By utilizing the AWS SDK, you can invoke a SageMaker endpoint passing content type

information along with content and then receive real-time predictions based on the data

passed. This enables you to keep the design and development of your ML models

separated from your code that performs actions on the inferred results.

This enables your data scientists to focus on ML, and the developers who are using the

ML model to focus on how they use it in their code. For more information on how to

invoke an endpoint in SageMaker, see InvokeEnpoint in the Amazon SageMaker API

Reference.

Inferring data insights in real time

The previous architecture diagram shows that Fast Sneakers’ existing web application

added a Kinesis Data Stream containing click-stream events, which provides traffic and

event data from the website. The product catalog, which contains information such as

categorization, product attributes, and pricing, and the order table, which has data such

as items ordered, billing, shipping, and so on, are separate DynamoDB tables. The data

stream source and the appropriate DynamoDB tables have their metadata and schemas

defined in the AWS Glue Data Catalog to be used by the AWS Glue streaming ETL job.

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html

Amazon Web Services Streaming Data Solutions on AWS

 17

By utilizing Apache Spark, Spark streaming, and DynamicFrames in their AWS Glue

streaming ETL job, Fast Sneakers is able to extract data from either data stream and

transform it, merging data from the product and order tables. With the hydrated data

from the transformation, the datasets to get inference results from are submitted to a

DynamoDB table.

The DynamoDB Stream for the table triggers a Lambda function for each new record

written. The Lambda function submits the previously transformed records to a

SageMaker Endpoint with the AWS SDK to infer what, if any, price adjustments are

necessary for a product. If the ML model identifies an adjustment to the price is

required, the Lambda function writes the price change to the product in the catalog

DynamoDB table.

Summary

Amazon Kinesis Data Streams makes it easy to collect, process, and analyze real-time,

streaming data so you can get timely insights and react quickly to new information.

Combined with the AWS Glue serverless data integration service, you can create real-

time event streaming applications that prepare and combine data for ML.

Because both Kinesis Data Streams and AWS Glue services are fully managed, AWS

takes away the undifferentiated heavy lifting of managing infrastructure for your big data

platform, letting you focus on generating data insights based on your data.

Fast Sneakers can utilize real-time event processing and ML to enable their website to

make fully automated real-time price adjustments, to maximize their product stock. This

brings the most value to their business while avoiding the need to create and maintain a

big data platform.

Scenario 4: Device sensors real-time anomaly

detection and notifications

Company ABC4Logistics transports highly flammable petroleum products such as

gasoline, liquid propane (LPG), and naphtha from the port to various cities. There are

hundreds of vehicles which have multiple sensors installed on them for monitoring

things such as location, engine temperature, temperature inside the container, driving

speed, parking location, road conditions, and so on. One of the requirements

ABC4Logistics has is to monitor the temperatures of the engine and the container in

real-time and alert the driver and the fleet monitoring team in case of any anomaly. To

Amazon Web Services Streaming Data Solutions on AWS

 18

detect such conditions and generate alerts in real-time, ABC4Logistics implemented the

following architecture on AWS.

ABC4Logistics’s device sensors real-time anomaly detection and notifications architecture

Data from device sensors is ingested by AWS IoT Gateway, where the AWS IoT rules

engine will make the streaming data available in Amazon Kinesis Data Streams. Using

Amazon Kinesis Data Analytics, ABC4Logistics can perform the real-time analytics on

streaming data in Kinesis Data Streams.

Using Kinesis Data Analytics, ABC4Logistics can detect if temperature readings from

the sensors deviate from the normal readings over a period of ten seconds, and ingest

the record onto another Kinesis Data Streams instance, identifying the anomalous

records. Amazon Kinesis Data Streams then invokes AWS Lambda functions, which

can send the alerts to the driver and the fleet monitoring team through Amazon SNS.

Data in Kinesis Data Streams is also pushed down to Amazon Kinesis Data Firehose.

Amazon Kinesis Data Firehose persists this data in Amazon S3, allowing ABC4Logistics

to perform batch or near-real time analytics on sensor data. ABC4Logistics uses

Amazon Athena to query data in S3, and Amazon QuickSight for visualizations. For

long-term data retention, the S3 Lifecycle policy is used to archive data to Amazon S3

Glacier.

Important components of this architecture are detailed next.

https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html
https://aws.amazon.com/athena/
https://aws.amazon.com/quicksight/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lifecycle-mgmt.html
https://aws.amazon.com/s3/glacier/
https://aws.amazon.com/s3/glacier/

Amazon Web Services Streaming Data Solutions on AWS

 19

Amazon Kinesis Data Analytics

Amazon Kinesis Data Analytics enables you to transform and analyze streaming data

and respond to anomalies in real time. It is a serverless service on AWS, which means

Kinesis Data Analytics takes care of provisioning, and elastically scales the

infrastructure to handle any data throughput. This takes away all the undifferentiated

heavy lifting of setting up and managing the streaming infrastructure, and enables you

to spend more time on writing steaming applications.

With Amazon Kinesis Data Analytics, you can interactively query streaming data using

multiple options, including Standard SQL, Apache Flink applications in Java, Python

and Scala, and build Apache Beam applications using Java to analyze data streams.

These options provide you with flexibility of using a specific approach depending on the

complexity level of streaming application and source/target support. The following

section discusses Kinesis Data Analytics for Flink Applications option.

Amazon Kinesis Data Analytics for Apache Flink applications

Apache Flink is a popular open-source framework and distributed processing engine for

stateful computations over unbounded and bounded data streams. Apache Flink is

designed to perform computations at in-memory speed and at scale with support for

exactly-one semantics. Apache Flink-based applications help achieve low latency with

high throughput in a fault tolerant manner.

With Amazon Kinesis Data Analytics for Apache Flink, you can author and run code

against streaming sources to perform time series analytics, feed real-time dashboards,

and create real-time metrics without managing the complex distributed Apache Flink

environment. You can use the high-level Flink programming features in the same way

that you use them when hosting the Flink infrastructure yourself.

Kinesis Data Analytics for Apache Flink enables you to create applications in Java,

Scala, Python or SQL to process and analyze streaming data. A typical Flink application

reads the data from the input stream or data location or source, transforms/filters or

joins data using operators or functions, and stores the data on output stream or data

location, or sink.

The following architecture diagram shows some of the supported sources and sinks for

the Kinesis Data Analytics Flink application. In addition to the pre-bundled connectors

for source/sink, you can also bring in custom connectors to a variety of other

source/sinks for Flink Applications on Kinesis Data Analytics.

https://aws.amazon.com/kinesis/data-analytics/
https://flink.apache.org/
https://ci.apache.org/projects/flink/flink-docs-release-1.11/concepts/flink-architecture.html
https://docs.aws.amazon.com/kinesisanalytics/latest/java/what-is.html

Amazon Web Services Streaming Data Solutions on AWS

 20

Apache Flink application on Kinesis Data Analytics for real-time stream processing

Developers can use their preferred IDE to develop Flink applications and deploy them

on Kinesis Data Analytics from AWS Management Console or DevOps tools.

Amazon Kinesis Data Analytics Studio

As part of Kinesis Data Analytics service, Kinesis Data Analytics Studio is available for

customers to interactively query data streams in real time, and easily build and run

stream processing applications using SQL, Python, and Scala. Studio notebooks are

powered by Apache Zeppelin.

Using Studio notebook, you have the ability to develop your Flink Application code in a

notebook environment, view results of your code in real time, and visualize it within your

notebook. You can create a Studio Notebook powered by Apache Zeppelin and Apache

Flink with a single click from Kinesis Data Streams and Amazon MSK console, or

launch it from Kinesis Data Analytics Console.

Once you develop the code iteratively as part of the Kinesis Data Analytics Studio, you

can deploy a notebook as a Kinesis data analytics application, to run in streaming mode

continuously, reading data from your sources, writing to your destinations, maintaining

long-running application state, and scaling automatically based on the throughput of

your source streams. Earlier, customers used Kinesis Data Analytics for SQL

Applications for such interactive analytics of real-time streaming data on AWS.

https://aws.amazon.com/console/
https://docs.amazonaws.cn/en_us/kinesisanalytics/latest/java/how-notebook.html
https://zeppelin.apache.org/
https://docs.aws.amazon.com/kinesisanalytics/latest/java/how-notebook.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/what-is.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/what-is.html

Amazon Web Services Streaming Data Solutions on AWS

 21

Kinesis Data Analytics for SQL applications is still available, but for new projects, AWS

recommends that you use the new Kinesis Data Analytics Studio. Kinesis Data

Analytics Studio combines ease of use with advanced analytical capabilities, which

makes it possible to build sophisticated stream processing applications in minutes.

For making the Kinesis Data Analytics Flink application fault-tolerant, you can make use

of checkpointing and snapshots, as described in the Implementing Fault Tolerance in

Kinesis Data Analytics for Apache Flink.

Kinesis Data Analytics Flink applications are useful for writing complex streaming

analytics applications such as applications with exactly-one semantics of data

processing, checkpointing capabilities, and processing data from data sources such as

Kinesis Data Streams, Kinesis Data Firehose, Amazon MSK, Rabbit MQ, and Apache

Cassandra including Custom Connectors.

After processing streaming data in the Flink application, you can persist data to various

sinks or destinations such as Amazon Kinesis Data Streams, Amazon Kinesis Data

Firehose, Amazon DynamoDB, Amazon Elasticsearch Service, Amazon Timestream,

Amazon S3, and so on. The Kinesis Data Analytics Flink application also provides sub-

second performance guarantees.

Apache Beam applications for Kinesis Data Analytics

Apache Beam is a programming model for processing streaming data. Apache Beam

provides a portable API layer for building sophisticated data-parallel processing

pipelines that may be run across a diversity of engines, or runners such as Flink, Spark

Streaming, Apache Samza, and so on.

You can use the Apache Beam framework with your Kinesis data analytics application

to process streaming data. Kinesis data analytics applications that use Apache Beam

use Apache Flink runner to run Beam pipelines.

Summary
By making use of the AWS streaming services Amazon Kinesis Data Streams, Amazon

Kinesis Data Analytics, and Amazon Kinesis Data Firehose, ABC4Logistics: can detect

anomalous patterns in temperature readings and notify the driver and the fleet

management team in real-time, preventing major accidents such as complete vehicle

breakdown or fire.

https://aws.amazon.com/blogs/aws/introducing-amazon-kinesis-data-analytics-studio-quickly-interact-with-streaming-data-using-sql-python-or-scala/
https://docs.aws.amazon.com/kinesisanalytics/latest/java/how-fault.html
https://docs.aws.amazon.com/kinesisanalytics/latest/java/how-fault.html
https://ci.apache.org/projects/flink/flink-docs-master/docs/concepts/stateful-stream-processing/
https://beam.apache.org/
https://beam.apache.org/documentation/runners/flink/

Amazon Web Services Streaming Data Solutions on AWS

 22

Scenario 5: Real time telemetry data monitoring

with Apache Kafka

ABC1Cabs is an online cab booking services company. All the cabs have IoT devices

that gather telemetry data from the vehicles. Currently, ABC1Cabs is running Apache

Kafka clusters that are designed for real-time event consumption, gathering system

health metrics, activity tracking, and feeding the data into Apache Spark Streaming

platform built on a Hadoop cluster on-premises.

ABC1Cabs use Kibana dashboards for business metrics, debugging, alerting, and

creating other dashboards. They are interested in Amazon MSK, Amazon EMR with

Spark Streaming, and Amazon ES with Kibana dashboards. Their requirement is to

reduce admin overhead of maintaining Apache Kafka and Hadoop clusters, while using

familiar open-source software and APIs to orchestrate their data pipeline. The following

architecture diagram shows their solution on AWS.

Real-time processing with Amazon MSK and Stream processing using Apache Spark Streaming

on EMR and Amazon Elasticsearch Service with Kibana for dashboards

The cab IoT devices collect telemetry data and send to a source hub. The source hub is

configured to send data in real time to Amazon MSK. Using the Apache Kafka producer

library APIs, Amazon MSK is configured to stream the data into an Amazon EMR

cluster. The Amazon EMR cluster has a Kafka client and Spark Streaming installed to

be able to consume and process the streams of data.

Spark Streaming has sink connectors which can write data directly to defined indexes of

Elasticsearch. Elasticsearch clusters with Kibana can be used for metrics and

dashboards. Amazon MSK, Amazon EMR with Spark Streaming, and Amazon ES with

Kibana dashboards are all managed services, where AWS manages the

undifferentiated heavy lifting of infrastructure management of different clusters, which

enables you to build your application using familiar open-source software with few

clicks. The next section takes a closer look at these services.

Amazon Web Services Streaming Data Solutions on AWS

 23

Amazon Managed Streaming for Apache Kafka

(Amazon MSK)

Apache Kafka is an open-source platform that enables customers to capture streaming

data like click stream events, transactions, IoT events, and application and machine

logs. With this information, you can develop applications that perform real-time

analytics, run continuous transformations, and distribute this data to data lakes and

databases in real-time.

You can use Kafka as a streaming data store to decouple applications from producer

and consumers and enable reliable data transfer between the two components. While

Kafka is a popular enterprise data streaming and messaging platform, it can be difficult

to set up, scale, and manage in production.

Amazon MSK takes care of these managing tasks and makes it easy to set up,

configure, and run Kafka, along with Apache Zookeeper, in an environment following

best practices for high availability and security. You can still use Kafka's control-plane

operations and data-plane operations to manage producing and consuming data.

Because Amazon MSK runs and manages open-source Apache Kafka, it makes it easy

for customers to migrate and run existing Apache Kafka applications on AWS without

needing to make changes to their application code.

Scaling

Amazon MSK offers scaling operations so that user can scale the cluster actively while

its running. When creating an Amazon MSK cluster, you can specify the instance type

of the brokers at cluster launch. You can start with a few brokers within an Amazon

MSK cluster. Then, using the AWS Management Console or AWS CLI, you can scale

up to hundreds of brokers per cluster.

Alternatively, you can scale your clusters by changing the size or family of your Apache

Kafka brokers. Changing the size or family of your brokers gives you the flexibility to

adjust your MSK cluster’s compute capacity for changes in your workloads. Use the

Amazon MSK Sizing and Pricing spreadsheet (file download) to determine the correct

number of brokers for your Amazon MSK cluster. This spreadsheet provides an

estimate for sizing an Amazon MSK cluster and the associated costs of Amazon MSK

compared to a similar, self-managed, EC2-based Apache Kafka cluster.

After creating the MSK cluster, you can increase the amount of EBS storage per broker

with exception of decreasing the storage. Storage volumes remain available during this

https://amazonmsk.s3.amazonaws.com/MSK_Sizing_Pricing.xlsx

Amazon Web Services Streaming Data Solutions on AWS

 24

scaling-up operation. It offers two types of scaling operations: Auto Scaling and Manual

Scaling.

Amazon MSK supports automatic expansion of your cluster's storage in response to

increased usage using Application Auto Scaling policies. Your automatic scaling policy

sets the target disk utilization and the maximum scaling capacity.

The storage utilization threshold helps Amazon MSK to trigger an automatic scaling

operation. To increase storage using manual scaling, wait for the cluster to be in the

ACTIVE state. Storage scaling has a cooldown period of at least six hours between

events. Even though the operation makes additional storage available right away, the

service performs optimizations on your cluster that can take up to 24 hours or more.

The duration of these optimizations is proportional to your storage size. Additionally, it

also offers multi–Availability Zones replication within an AWS Region to provide High

Availability.

Configuration

Amazon MSK provides a default configuration for brokers, topics, and Apache

Zookeeper nodes. You can also create custom configurations and use them to create

new MSK clusters or update existing clusters. When you create an MSK cluster without

specifying a custom MSK configuration, Amazon MSK creates and uses a default

configuration. For a list of default values, see this Apache Kafka Configuration.

For monitoring purposes, Amazon MSK gathers Apache Kafka metrics and sends them

to Amazon CloudWatch, where you can view them. The metrics that you configure for

your MSK cluster are automatically collected and pushed to CloudWatch. Monitoring

consumer lag enables you to identify slow or stuck consumers that aren't keeping up

with the latest data available in a topic. When necessary, you can then take remedial

actions, such as scaling or rebooting those consumers.

Migrating to Amazon MSK

Migrating from on premises to Amazon MSK can be achieved by one of the following

methods.

• MirrorMaker2.0 — MirrorMaker2.0 (MM2) MM2 is a multi-cluster, data

replication engine based on Apache Kafka Connect framework. MM2 is a

combination of an Apache Kafka source connector and a sink connector. You

can use a single MM2 cluster to migrate data between multiple clusters. MM2

automatically detects new topics and partitions, while also ensuring the topic

https://docs.aws.amazon.com/msk/latest/developerguide/msk-default-configuration.html

Amazon Web Services Streaming Data Solutions on AWS

 25

configurations are synced between clusters. MM2 supports migrations ACLs,

topics configurations, and offset translation. For more details related to migration,

see Migrating Clusters Using Apache Kafka's MirrorMaker. MM2 is used for use

cases related to replication of topics configurations and offset translation

automatically.

• Apache Flink — MM2 supports at least once semantics. Records can be

duplicated to the destination and the consumers are expected to be idempotent

to handle duplicate records. In exactly-once scenarios, semantics are required

customers can use Apache Flink. It provides an alternative to achieve exactly

once semantics.

Apache Flink can also be used for scenarios where data requires mapping or

transformation actions before submission to the destination cluster. Apache Flink

provides connectors for Apache Kafka with sources and sinks that can read data

from one Apache Kafka cluster and write to another. Apache Flink can be run on

AWS by launching an Amazon EMR cluster or by running Apache Flink as an

application using Amazon Kinesis Data Analytics.

• AWS Lambda — With support for Apache Kafka as an event source for AWS

Lambda, customers can now consume messages from a topic via a Lambda

function. The AWS Lambda service internally polls for new records or messages

from the event source, and then synchronously invokes the target Lambda

function to consume these messages. Lambda reads the messages in batches

and provides the message batches to your function in the event payload for

processing. Consumed messages can then be transformed and/or written directly

to your destination Amazon MSK cluster.

Amazon EMR with Spark Streaming

Amazon EMR is a managed cluster platform that simplifies running big data

frameworks, such as Apache Hadoop and Apache Spark on AWS, to process and

analyze vast amounts of data.

Amazon EMR provides the capabilities of Spark and can be used to start Spark

streaming to consume data from Kafka. Spark Streaming is an extension of the core

Spark API that enables scalable, high-throughput, fault-tolerant stream processing of

live data streams.

You can create an Amazon EMR cluster using the AWS Command Line Interface (AWS

CLI) or on the AWS Management Console and select Spark and Zeppelin in advanced

https://docs.aws.amazon.com/msk/latest/developerguide/migration.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-flink.html
https://docs.aws.amazon.com/kinesisanalytics/latest/java/how-it-works.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/emr
https://aws.amazon.com/elasticmapreduce/details/hadoop
https://spark.apache.org/
https://aws.amazon.com/cli/
https://aws.amazon.com/console/

Amazon Web Services Streaming Data Solutions on AWS

 26

configurations while creating the cluster. As shown in the following architecture diagram,

data can be ingested from many sources such as Apache Kafka and Kinesis Data

Streams, and can be processed using complex algorithms expressed with high-level

functions such as map, reduce, join and window. For more information, see

Transformations on DStreams.

Processed data can be pushed out to filesystems, databases, and live dashboards.

Real-time streaming flow from Apache Kafka to Hadoop ecosystem

By default, Apache Spark Streaming has a micro-batch run model. However, since

Spark 2.3 came out, Apache has introduced a new low-latency processing mode

called Continuous Processing, which can achieve end-to-end latencies as low as one

millisecond with at-least-once guarantees.

Without changing the Dataset/DataFrames operations in your queries, you can choose

the mode based on your application requirements. Some of the benefits of Spark

Streaming are:

• It brings Apache Spark's language-integrated API to stream processing, letting

you write streaming jobs the same way you write batch jobs.

• It supports Java, Scala and Python.

• It can recover both lost work and operator state (such as sliding windows) out of

the box, without any extra code on your part.

• By running on Spark, Spark Streaming lets you reuse the same code for batch

processing, join streams against historical data, or run ad-hoc queries on the

stream state and build powerful interactive applications, not just analytics.

https://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams
https://spark.apache.org/docs/latest/streaming-programming-guide.html

Amazon Web Services Streaming Data Solutions on AWS

 27

• After the data stream is processed with Spark Streaming, Elasticsearch Sink

Connector can be used to write data to the Amazon ES cluster, and in turn,

Amazon ES with Kibana dashboards can be used as consumption layer.

Amazon Elasticsearch Service with Kibana

Amazon ES is a managed service that makes it easy to deploy, operate, and scale

Elasticsearch clusters in the AWS Cloud. Elasticsearch is a popular open-source search

and analytics engine for use cases such as log analytics, real-time application

monitoring, and clickstream analysis.

Kibana is an open-source data visualization and exploration tool used for log and time-

series analytics, application monitoring, and operational intelligence use cases. It offers

powerful and easy-to-use features such as histograms, line graphs, pie charts, heat

maps, and built-in geospatial support.

Kibana provides tight integration with Elasticsearch, a popular analytics and search

engine, which makes Kibana the default choice for visualizing data stored in

Elasticsearch. Amazon ES provides an installation of Kibana with every Amazon ES

domain. You can find a link to Kibana on your domain dashboard on the Amazon ES

console.

Summary

With Apache Kafka offered as a managed service on AWS, you can focus on

consumption rather than on managing the coordination between the brokers, which

usually requires a detailed understanding of Apache Kafka. Features such as high

availability, broker scalability, and granular access control are managed by the Amazon

MSK platform.

ABC1Cabs utilized these services to build production application without needing

infrastructure management expertise. They could focus on the processing layer to

consume data from Amazon MSK and further propagate to visualization layer.

Spark Streaming on Amazon EMR can help real-time analytics of streaming data, and

publishing on Kibana on Amazon Elasticsearch Service for the visualization layer.

https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/what-is-amazon-elasticsearch-service.html
https://aws.amazon.com/elasticsearch-service/the-elk-stack/kibana/
https://aws.amazon.com/elasticsearch-service/the-elk-stack/what-is-elasticsearch/
https://aws.amazon.com/elasticsearch-service/the-elk-stack/kibana/

Amazon Web Services Streaming Data Solutions on AWS

 28

Conclusion

This document reviewed several scenarios for streaming workflows. In these scenarios,

streaming data processing provided the example companies with the ability to add new

features and functionality.

By analyzing data as it gets created, you will gain insights into what your business is

doing right now. AWS streaming services enable you to focus on your application to

make time-sensitive business decisions, rather than deploying and managing the

infrastructure

Contributors

The following individuals and organizations contributed to this document:

• Amalia Rabinovitch, Sr. Solutions Architect, AWS

• Priyanka Chaudhary, Data Lake, Data Architect, AWS

• Zohair Nasimi, Solutions Architect, AWS

• Rob Kuhr, Solutions Architect, AWS

• Ejaz Sayyed, Sr. Partner Solutions Architect, AWS

• Allan MacInnis, Solutions Architect, AWS

• Chander Matrubhutam, Product Marketing Manager, AWS

Document versions

Date Description

September

01, 2021

Updated for technical accuracy

September

07, 2017

First publication

	Introduction
	Real-time and near-real-time application scenarios
	Difference between batch and stream processing

	Stream processing challenges
	Streaming data solutions: examples
	Scenario 1: Internet offering based on location
	Amazon Kinesis Data Streams
	Sending data to Amazon Kinesis Data Streams
	Processing data in Amazon Kinesis Data Streams

	Processing streams of data with AWS Lambda
	Summary

	Scenario 2: Near-real-time data for security teams
	Amazon Kinesis Data Firehose
	Sending data to a Firehose delivery stream
	Using Amazon Kinesis agent
	Using API with AWS SDK and AWS services as a source
	Processing data before delivery to destination
	Data transformation flow
	Data format conversion
	Data delivery

	Amazon S3
	Data delivery to Amazon S3

	Amazon Redshift
	Data delivery to Amazon Redshift

	Amazon Elasticsearch Service (Amazon ES)
	Data delivery to Amazon ES

	Custom HTTP endpoint or supported third-party service provider
	Data delivery to custom HTTP endpoints

	Summary

	Scenario 3: Preparing clickstream data for data insights processes
	AWS Glue and AWS Glue streaming
	AWS Glue Data Catalog
	AWS Glue streaming ETL job

	Amazon DynamoDB
	Change data capture for DynamoDB streams

	Amazon SageMaker and Amazon SageMaker service endpoints
	Inferring data insights in real time
	Summary

	Scenario 4: Device sensors real-time anomaly detection and notifications
	Amazon Kinesis Data Analytics
	Amazon Kinesis Data Analytics for Apache Flink applications
	Amazon Kinesis Data Analytics Studio

	Apache Beam applications for Kinesis Data Analytics

	Scenario 5: Real time telemetry data monitoring with Apache Kafka
	Amazon Managed Streaming for Apache Kafka (Amazon MSK)
	Scaling
	Configuration
	Migrating to Amazon MSK

	Amazon EMR with Spark Streaming
	Summary

	Conclusion
	Contributors
	Document versions

