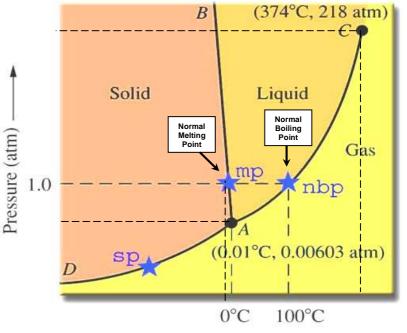

Generic Phase Diagram

• **Sublimation** is the phase change as a substance changes from a solid to a gas without passing through the intermediate state of a liquid.

- **Deposition** is the phase change as a substance changes from a gas to a solid without passing through the intermediate state of a liquid.
- TRIPLE POINT The temperature and pressure at which the solid, liquid, and gas phases exist simultaneously.

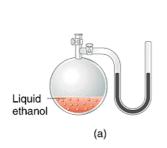

• **CRITICAL POINT** - The

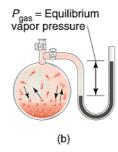
temperature above which a substance will always be a gas regardless of the pressure.

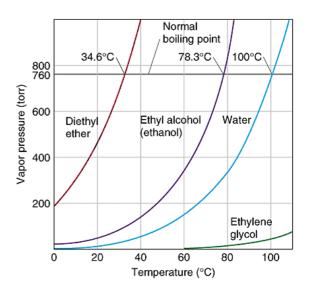
- NOTE:
 - o The solid phase is more dense than the liquid phase.
 - o The line between the solid and gas phases is the equilibrium of solid and gas phases at that specific pressure and temperature, i.e. a curve of all the deposition/sublimation points.
 - o The line between the solid and liquid phases is the equilibrium of solid and liquid phases at that specific pressure and temperature, i.e. a curve of all the freezing/melting points.
 - o The line between the liquid and gas phases is the equilibrium of liquid and gas phases at that specific pressure and temperature, i.e. a curve of all the vaporization/condensation points.
- <u>Melting Point</u> (Freezing Point) The temperature at which the solid and liquid phases of a substance are in equilibrium at atmospheric pressure.
 - o Normal Melting Point (Freezing Point) The temperature at which the solid changes to a liquid at Standard Pressure (1.00 atm = 760 mmHg = 760 torr = 101.325 kPa)
- <u>Boiling Point</u> (Condensation Point) The temperature at which the vapor pressure of a liquid is equal to the pressure on the liquid.
 - o Normal Boiling Point (Condensation Point) The temperature at which the vapor pressure of a liquid is equal to Standard Pressure (1.00 atm = 760 mmHg = 760 torr = 101.325 kPa)

Phase Diagram for Water

For water, the liquid phase is more dense than the solid phase due to hydrogen bonding.



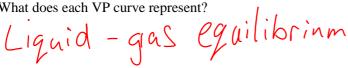

Temperature

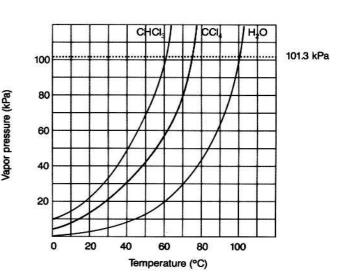

Vapor Pressure

If you put any liquid in a sealed vessel and wait long enough, (b) the liquid will come into equilibrium with its vapor, and a constant (steady; dependent only of the temperature) equilibrium vapor pressure will be established.

Normal Boiling Point - The temperature at which the vapor pressure of a liquid is equal to Standard Pressure (1.00 atm = 760 mmHg = 760 torr = 101.325 kPa)

PART B - VAPOR PRESSURE GRAPH


Use the graph at right to answer the following questions:


What is the vapor pressure of CHCl₃ at 50°C?

- 2. What is the boiling point of H₂O when the external pressure is 30 kPa?
- What is the normal boiling point of CCl₄?

Which substance has the weakest IN

5. What does each VP curve represent?

Phase Diagram 1

Use the phase diagram for water at right to answer the following questions:

1. What is the state of water at 2 atm and 50°

2. What phase change will occur if the temperature is lowered from 80°C to -5°C at 1 atm?

Freezing (175)

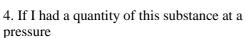
3. You have ice at -10°C and 1 atm. What could you do in order cause the ice to sublime?

Critical point 217.75 Critical pressure Liquid Normal freezing point 1.00 Normal boiling Solid point 0.0060 Vapor Triple point 0.00 0.01 100.00 373.99 Critical temperature

0.0060 atm

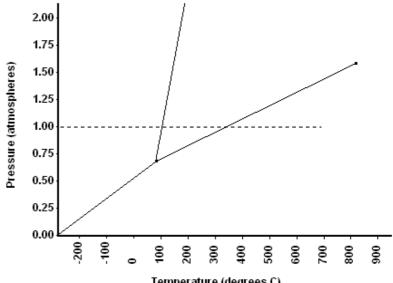
decrease pressure below

Phase Diagram 2


Refer to the phase diagram at right when answering the questions on this worksheet:

1. What is the normal freezing point of this substance?

2. What is the normal boiling point of this substance?



substance? 1000

of 1.25 atm and a temperature of 300° C and lowered the pressure to 0.25 atm, what phase saporation (179 transition(s)

would occur?

5 At what temperature do the gas and liquid phases become indistinguishable from each other?

830°C

6. If I had a quantity of this substance at a pressure of 0.75 atm and a temperature of -100° C, what phase change(s) would occur if I increased the temperature to 600° C? At what temperature(s) would they occur?

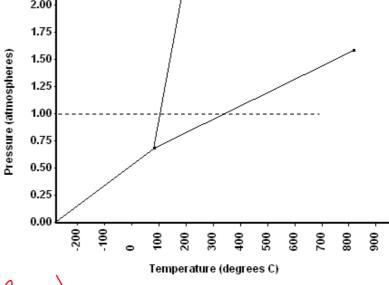
Pressure (atm)

-100

Melting (s-12) of

Phase Diagram 3

For each of the questions on this worksheet, refer to the phase diagram for mysterious compound X:


1. What is the critical temperature of compound X?

2. If you were to have a bottle containing compound in your closet, what phase would it most likely be in?

3. At what temperature and pressure will all three phases coexist?

4. If I have a bottle of compound X at a pressure of 45 atm and temperature of 100° C, what will happen

if I raise the temperature to 400° C?

90 80 70 liquid 60 solid 50 40 30 gas 20

Phase diagram for mysterious compound X

5. Why can't compound X be boiled at a temperature

of 200° C?

Only solid + gas phases

300

400

500 600

200

100

6. If I wanted to, could I drink compound X?

	nistry I - Phase Diagrams Water & CO ₂ he diagrams below to answer the following questions:	
	Phase Diagram for Water (Not to Scale) Phase Diagram for Carbon Dioxide	
217.7	Supercritical fluid 73.0	ritic
1	F C • E C • E	
× 10 ⁻³	5.11 B • D	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1.	What does Point O in both diagrams above represents? And what can you tell me about the phase or phase of matter at those pressures and temperatures? Triple point: S,l, g coexist (equilibrium) What is the significance of line OF? I quid Solid equilibrium (both states exist	es \
2.	What is the significance of line OF? equilibrium (both states exist	-)
3.	\	
4.	What is the significance of line OE? (iquid gas equilibrium (1+9 exist)	
5.	Using the diagrams above indicate the proper temperature or pressure for the following points. a. Normal melting point °C for water g. Normal boiling point for °C for water g.	
	b. Triple point temp for water $\frac{0.0098}{0.0098}$ Ch. triple point pressure for water $\frac{6 \times 10^{-3}}{0.0098}$ at N	1
	c. Triple point temp for $CO_2 = \frac{56.9}{2}$ i. triple point pressure for $CO_2 = \frac{5.11}{2}$ d. Critical pressure for water $\frac{217.7}{2}$ atm j. critical temp for water $\frac{374.4}{2}$	
	e. Critical pressure for CO_2 $\frac{75}{2}$ at M_2 k. critical temp for CO_2 $\frac{31.18}{2}$	
6.		J
7.	Refer to the phase diagram for CO ₂ . What changes in temperature, pressure, and physical state would be necessary to go from point B to point D? PRESSURE IS SHEADY, HEMP INCREASES, SOLID SUB-	.[;