
CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

VSM’s

SOMASHEKHAR R KOTHIWALE INSTITUTE OF TECHNOLOGY, NIPANI

DEPT. OF ELECTRONICS & COMMUNICATION ENGINEERING.

COMPUTER COMMUNICATION NETWORKS LABORATORY

(17ECL68)

LAB MANUAL

2019-20

Faculty Incharge

Prof. Prashant M. Ganji

Asst. Prof. Electronics & Communication Dept.

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

Syllabus

PART - B: C or C++ Programming

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

PART – A

DEMO EXPERIMENT

TITLE-SIMULATE A THREE-NODE POINT-TO-POINT NETWORK WITH A

DUPLEX LINK BETWEEN THEM. SET THE QUEUE SIZE AND VARY THE

BANDWIDTH AND FIND THE NUMBER OF PACKETS DROPPED.

Procedure:

Step1: Drawing topology

1. Select/click the HOST icon on the tool bar and click the left mouse button on the editor, to

place a HOST1 on the editor. Repeat the above procedure and place another host

“HOST2” on the editor.

2. Select/click the HUB icon on the tool bar and click the left mouse button on the editor, to

place HUB1 on the editor.

3. Click on the LINK icon on the tool bar and connect HOST1 to HUB1 and HUB1 to

HOST2

4. Click on the “E” icon on the tool bar to save the current topology e.g: file1.tpl (Look for

the ******.tpl extension.)

NOTE: Changes cannot / (should not) be done after selecting the “E” icon.

Step2: Configuration

1. Double click the left mouse button while cursor is on HOST1 to open the HOST window.

2. Select Add button on the HOST window to invoke the command window and provide the

following

 command in the command text box.

 stg –u 1024 100 1.0.1.2 for UDP

 or

 stcp -p 7000 -l 1024 1.0.1.2 for TCP

3. Click OK button on the command window to exit and once again click on the OK button

on the HOST window to exit.

4. Double click the left mouse button while cursor is on HOST2 to open the HOST window.

5. Select Add button on the HOST window to invoke the command window and provide the

following command in the command text box.

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

rtg –u –w log1 for UDP

 or

 rtcp -p 7000 -l 1024 for TCP

6. Click OK button on the command window to exit.

7. Click NODE EDITOR Button on the HOST window and select the MAC tab from the

modal window that pops up.

8. Select LOG STATISTICS and select check boxes for Number of Drop Packet and Number

of Collisions in the MAC window

9. Click OK button on the MAC window to exit and once again click on the OK button on the

HOST window to exit.

Note: To set QUEUE size

1. Double click the left mouse button while cursor is on HOST2 to open the HOST window.

2. Click NODE EDITOR Button on the HOST window and select the FIFO tab from the

modal window that pops up.

3. Change Queue size (Default 50).

4. Click OK button on the FIFO window to exit and once again click on the OK button on the

HOST window to exit.

Step3: Simulate

1. Click “R” icon on the tool bar

2. Select Simulation in the menu bar and click/ select RUN in the drop down list to execute

the simulation.

3. To start playback select “►” icon located at the bottom right corner of the editor.

4. To view results, Open Output throughput, Input Throughput and Drop log files from

file1.results folder in separate word processor.

Caution: file1 is the hypothetical name given to this simulation.

Changing configurations

Change 1

1. Open the above file,

2. Do not change the topology or any other configuration,

3. Select E icon on the tool bar

4. Reduce the bandwidth at link by double clicking the left mouse button

5. Repeat Step3 (Simulate)

Change 3

1. Open the above file,

2. Remove HUB and replace it with SWITCH.

3. Do not change anything in the configuration

4. Repeat Step3(Simulate)

By setting the bandwidth as 10 Mbps on both the links and queue size as 50 we obtain

the

following results: bandwidth to 10 Mbps in the destination link, we obtain the following

results

 Output throughput nl-pl = 1177

Input throughput n3-pl = 1177

Collision and drop = 0

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

By changing bandwidth to 9Mbps in the destination link, we obtain the following

results:

Output throughput nl-pl =1177

Input throughput n3-pl = - 0

Collision and drop = 1100

Note: The results of the experiments vary from simulation to simulation.

By using SWITCH

Results: By setting the bandwidth as 10 Mbps on both the links and queue size as 50 we

obtain the following results:

output throughput nl-pl= 1190

input throughput n3-pl = 1190

collision and drop = 0

 By changing bandwidth to 9Mbps in the destination link, we obtain the following results:

Output throughput nl-pl =1190

 Input throughput n3-pl = varying

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

EXPERIMENT 2

TITLE- SIMULATES A FOUR NODE POINT-TO-POINT NETWORK WITH THE

LINKS CONNECTED AS FOLLOWS: N0–N2, N1–N2 AND N2–N3. APPLY TCP

AGENT BETWEEN N0-N3 AND UDP BETWEEN N1-N3. APPLY RELEVANT

APPLICATIONS OVER TCP AND UDP AGENTS CHANGING THE PARAMETER

AND DETERMINE THE NUMBER OF PACKETS SENT BY TCP / UDP.

Procedure:

Step1: Drawing topology

1. Select/click the HOST icon on the tool bar and click the left mouse button on the editor, to

place a host on the editor. Repeat the above procedure and place two other hosts

“HOST2” and “HOST3” on the editor.

2. Select/click the HUB (or SWITCH) icon on the tool bar and click the left mouse button on

the editor, to

 place a HUB (or SWITCH) on the editor.

3. Click on the LINK icon on the tool bar and connect HOST1 to HUB, HOST2 to HUB and

HUB to HOST3

4. Click on the “E” icon on the tool bar to save the current topology e.g: file2.tpl (Look for

the ******.tpl

 extension.)

NOTE: Changes cannot / (should not) be done after selecting the “E” icon.

Step2: Configuration

1. Double click the left mouse button while cursor is on HOST1 to open the HOST window.

2. Select Add button on the HOST window to invoke the command window and provide the

following

 command in the command text box.

 stcp –p 7000 –l 1024 1.0.1.3 (for TCP start time 0.0 and end time 20.0)

3. Click OK button on the command window to exit

4. Click NODE EDITOR Button on the HOST window and select the MAC tab from the

modal window that

 pops up.

5. Select LOG STATISTICS and select check box for output throughput in the MAC window

6.Click OK button on the MAC window to exit and once again click on the OK button on the

HOST window to exit

7. Double click the left mouse button while cursor is on HOST2 to open the HOST window.

8. Select Add button on the HOST window to invoke the command window and provide the

following

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

 command in the command text box.

 stg –u 1024 100 1.0.1.3 (for UDP start time 21.0 and end time 40.0)

9. Click OK button on the command window to exit

10. Click NODE EDITOR Button on the HOST window and select the MAC tab from the

modal window that pops up.

11. Select L

OG STATISTICS and select check box for output throughput in the MAC window

12. Click OK button on the MAC window to exit and once again click on the OK button on

the HOST window to exit.

13. Double click the left mouse button while cursor is on HOST3 to open the HOST window.

14. Select Add button on the HOST window to invoke the command window and provide the

following

 command in the command text box.

 rtcp –p 7000 –l 1024 (for TCP start time 0.0 and end time 20.0)

15. Click OK button on the command window to exit.

16. Also add the following common on HOST3

 rtg –u –w log1 (for UDP start time 21.0 and end time 40.0)

17. Click NODE EDITOR Button on the HOST window and select the MAC tab from the

modal window that pops up.

18. Select LOG STATISTICS and select check box for input and output throughput in the

MAC window

19. Click OK button on the MAC window and once again click on the OK button on the

HOST window to exit.

Step3: Simulate

1. Click “R” icon on the tool bar

2. Select Simulation in the menu bar and click/ select RUN in the drop down list to execute

the simulation.

3. To start playback select “►” icon located at the bottom right corner of the editor.

4. To view results, Open input and output throughput log files from file2.results folder in

separate word

 processor.

Caution: file2 is the hypothetical name given to this simulation

RESULTS ANALYSIS :

With Bandwidth 10 MBPS and BER 0.000000000

 Time

 Packets

N1_Output Throughput (TCP) N2_Output

Throughput (UDP)

N3_Input

Throughput

(TCP+UDP)

1

2

3

4

5

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

EXPERIMENT -3

TITLE-SIMULATE THE TRANSMISSION OF PING MESSAGES OVER A

NETWORK TOPOLOGY CONSISTING OF 6 NODES AND FIND THE NUMBER OF

PACKETS DROPPED DUE TO CONGESTION.

Procedure:

Step1: Drawing topology

1. Select/click the SUBNET icon on the tool bar and click the left mouse button on the editor,

to place a

 SUBNET on the editor.

2. A pop up window appears requesting the number of nodes and radius for the subnet, Set

number of

 nodes=6; Set radius of subnet >150

3. Click on the “E” icon on the tool bar to save the current topology e.g: file4.tpl (Look for

the ******.tpl

 extension.)

NOTE: Changes cannot / (should not) be done after selecting the “E” icon.

Step2: Configuration

1. Double click the left mouse button while cursor is on a HOST to open the HOST window.

2. Click NODE EDITOR Button on the HOST window and select the INTERFACE tab (1st

tab) from the modal window that pops up.

3. Determine the IP address of the selected host.

4. Click OK button on the INTERFACE window to exit and once again click on the OK

button on the HOST window to exit.

5. Repeat the above step for 2 other HOSTS

6. Also click NODE EDITOR Button on the HOST window and select the MAC tab from the

modal window

 that pops up.

7. Select LOG STATISTICS and select check box for drop and collision log statistics in the

MAC window

8. Click OK button on the MAC window to exit and once again click on the OK button on the

HOST window to exit.

9. Repeat steps 6 to 9 for the other hosts selected at step 5.

10. Select G _ setting from the menu bar and select Simulation from the drop down list Set

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

simulation

 time>600sec

Step3: Simulate

1. Click “R” icon on the tool bar

2. Select Simulation in the menu bar and click/ select RUN in the drop down list to execute

the simulation.

3. During simulation, double click the mouse button on a HOST, the HOST window pops up,

select / click on command console button located at the bottom.

4. A terminal window appears, type ping IP address of a host in the subnet at the command

prompt.

Note: The no: of drop packets are obtained only when the traffic in more in network.

Results Analysis:

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

EXPERIMENT 4

 Simulate an Ethernet LAN using N nodes (6-10), change error rate and data rate and

compare throughput.

Step1: Drawing topology

1. Select/click the HOST icon on the tool bar and click the left mouse button on the editor, to

place HOST1 on the editor.

 i. Repeat the above procedure and place 5 other hosts “HOST2”, “HOST3”, “HOST4”,

“HOST5”, and

 “HOST6”on the editor.

2. Select/click the HUB icon on the tool bar and click the left mouse button on the editor, to

place HUB1 on the editor. Repeat the above procedure and place another host “HUB2” on

the editor

3. Click on the LINK icon on the tool bar and connect HOST1, HOST2 and HOST3 to

HUB1, HOST4, HOST5 and HOST6 to HUB2.

4. Select/click the SWITCH icon on the tool bar and click the left mouse button on the editor,

to place

 SWITCH1 on the editor.5. Click on the LINK icon on the tool bar and connect HUB1 to

SWITCH1 and HUB2 to SWITCH1.

6. Click on the “E” icon on the tool bar to save the current topology e.g: file5.tpl (Look for

the ******.tpl

 extension.)

NOTE: Changes cannot / (should not) be done after selecting the “E” icon.

Step2: Configuration

1. Double click the left mouse button while cursor is on HOST1 to open the HOST window.

2. Select Add button on the HOST window to invoke the command window and provide the

following

command in the command text box.

 stcp[-p port] [-1 writesizej host IP addr

3. Click OK button on the command window to exit and once again click on the OK button

on the HOST

 window to exit.

4. Repeat this step at HOST 2 and HOST3,

5. Double click the left mouse button while cursor is on HOST4 to open the HOST window.

6. Select Add button on the HOST window to invoke the command window and provide the

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

following

command in the command textbox.

 rtcp [-p port] [-l read size]

7. Click OK button on the command window to exit.

8. Click NODE EDITOR Button on the HOST window and select the MAC tab from the

modal window that

 pops up.

9. Select LOG STATISTICS and select check box for output throughput in the MAC window

10. Click OK button on the MAC window to exit and once again click on the OK button on

the HOST window to exit.

11. Repeat this step at HOST 5 and HOST6,

12. Double click the left mouse button while cursor is on HOST5 to open the HOST window.

13. Click NODE EDITOR Button on the HOST5 window and select the PHYSICAL tab from

the modal window that pops up.

14. Change Bit Error Rate

15. Click OK button on the PHYSICAL window to exit and once again click on the OK

button to return to the HOST window

16. Click NODE EDITOR Button on the HOST window and select the MAC tab from the

modal window that pops up.

17. Select LOG STATISTICS and select check box for output throughput in the MAC

window

18. Click OK button on the MAC window to exit and once again click on the OK button on

the HOST window to exit.

19. Repeat this step HOST6, Change Bandwidth this time while undoing the change in Bit

Error Rate, also select the output throughput at HOST6.

Step3: Simulate

1. Click “R” icon on the tool bar

2. Select Simulation in the menu bar and click/ select RUN in the drop down list to execute

the simulation.

3. To start playback select “►” icon located at the bottom right corner of the editor.

4. To view results, Open input and output throughput log files from file5.results folder in

separate word

processor.

Caution: file5 is the hypothetical name we gave to this simulation

Results:

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

EXPERMENT 5

TITLE-SIMULATE AN ETHERNET LAN USING N NODES AND SET MULTIPLE

TRAFFIC NODES AND PLOT CONGESTION WINDOWS FOR DIFFERENT

SOURCES/ DESTINATION.

PROCEDURE - PROGRAMME - ACTIVITY :

Step1: Drawing topology

1. connect one set of hosts with a hub and anther set of hosts also through a hub connect

these two hubs through a switch. This forms an Ethernet LAN.

2. Setup multiple traffic connection between the hosts on one hub and hosts on another hub

using the following command.

 Stcp [-p port] [-l writesize] hostIPaddr

 Rtcp[-p port] [-l readsize]

3. Setup the collision log at the destination hosts in the MAC layer as described in the

earlier experiments.

4. To plot the congestion window go to Menu  Tools  Plot Graph  File-open

  Filename. Results filename.coll.log.

5. View the results in the filename Results.

RESULTS:

RESULTS:

Drops at node 5: 324 - 7560

Drops at node4: 274 - 930

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

EXPERIMENT 6

TITLE-SIMULATE SIMPLE ESS AND WITH TRANSMITTING NODES IN WIRE-

LESS LAN BY SIMULATION AND DETERMINE THE PERFORMANCE WITH

RESPECT TO TRANSMISSION OF PACKETS.

PROCEDURE:

Step1: Drawing topology

1. Select/click the HOST icon on the tool bar and click the left mouse button on the editor, to

place HOST1 on the editor.

2. Select/click the ROUTER icon on the tool bar and click the left mouse button on the editor,

to place

 ROUTER1 on the editor.

3. Select/click the WIRELESS ACCESS POINT(802.11b) icon on the tool bar and click the

left mouse button on the editor, to place ACCESS POINT 1 on the editor.

4. Repeat this procedure and place ACCESS POINT 2 on the editor. Select/click the

MOBILE NODE

 (infrastructure mode) icon on the tool bar and click the left mouse button on the editor, to

place MOBIL

 NODE 4 on the editor.

5. Click on the LINK icon on the tool bar and connect ACCESS POINT1 to ROUTER1 and

ACCESS POINT2 to ROUTER1

6. Click on the “Create a moving path” icon on the tool bar and draw moving path across

MOBILE NODE1

 and 2, Repeat for MOBILE NODE 3and 4 (Accept the default speed value 10 and close the

window, Click the right mouse button to terminate the path).

To create Subnet

7. Select wireless subnet icon in the tool bar now select MOBILE NODE1 MOBILE NODE2

and ACCESS

POINT1 by clicking on left mouse button, and clicking right mouse button will create a

subnet.

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

8. Repeat the above step for MOBILE NODE3, MOBILE NODE4 and ACCESS POINT2.

9. Click on the “E” icon on the tool bar to save the current topology e.g: file8.tpl (Look for

the ******.tpl

extension.)

NOTE: Changes cannot / (should not) be done after selecting the “E” icon.

Step2: Configuration

1. Double click the left mouse button while cursor is on HOST1 to open the HOST window.

2. Select Add button on the HOST window to invoke the command window and provide the

following

 command in the command text box.

 ttcp –r –u –s –p 8001

3. Click OK button on the command window to exit

4. Repeat this step and add the following commands at HOST1

ttcp –r –u –s –p 8002

ttcp –r –u –s –p 8003

ttcp –r –u –s –p 8004

5. Click NODE EDITOR Button on the HOST1 window and select the MAC tab from the

modal window that pops up.

6. Select LOG STATISTICS and select check box for Input throughput in the MAC window

7. Click OK button on the MAC window to exit and once again click on the OK button on the

HOST window to exit.

8. Double click the left mouse button while cursor is on MOBILE NODE 1 to open the

MOBILE NODE

 window.

9. Select Application tab and select Add button to invoke the command window and provide

the following

 command in the command text box.

ttcp –t –u –s –p 80011.0.2.2 (host’s ip address)

10. Click NODE EDITOR Button on the MOBILE NODE1 window and select the MAC tab

from the nodal

 window that pops up.

11. Select LOG STATISTICS and select check box for Output throughput in the MAC

window

12. Click OK button on the MAC window to exit and once again click on the OK button on

the MOBILE NODE1 window to exit.

13. Repeat the above steps (step 8 to step12) for the MOBILE NODE2,3 and 4 and add the

following

Commands at MOBILE NODE2:- ttcp –t –u –s –p 8002 1.0.2.2

MOBILE NODE 3:- ttcp –t–u –s –p 8003 1.0.2.2

MOBILE NODE4:- ttcp –t –u –s –p 8004 1.0.2.2

14. Double click the left mouse button while cursor is on ROTER1 to open the ROUTER

window.

15. Click NODE EDITOR Button on the ROUTER1 window and you can see three stacks.

two stacks for two ACCESS POINTS and another stack for HOST1 which is connected to

the ROUTER1.

16. Select the MAC tab of ACCESS POINT1 and Select LOG STATISTICS and select check

box for Input

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

 throughput in the MAC window. Click OK button on the MAC window to exit.

17. Select the MAC tab of ACCESS POINT2 and Select LOG STATISTICS and select check

box for Input

throughput in the MAC window. Click OK button on the MAC window to exit.

18. Select the MAC tab of HOST1 and Select LOG STATISTICS and select check box for

Output throughput in the MAC window. Click OK button on the MAC window to exit.

Step3: Simulate

1. Click “R” icon on the tool bar

2. Select Simulation in the menu bar and click/ select RUN in the drop down list to execute

the simulation.

3. To start playback select “►” icon located at the bottom right corner of the editor.

4. MOBILE NODE’s start moving across the paths already drawn.

Caution: file8 is the hypothetical name given to this simulation,

RESULTS & ANALYSIS:

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

PART-B

Program 1:-

Write a program for a HLDC frame to perform the following:

(i) Bit stuffing

Aim:- Write a program to perform bit stuffing in C language and execute the same and

display the result.

Theory: The new technique allows data frames to contain an arbitrary number if bits and

allows character codes with an arbitrary no of bits per character. Each frame begins

and ends with special bit pattern, 01111110, called a flag byte. Whenever the sender’s

data link layer encounters five consecutive ones in the data, it automatically stuffs a 0 bit

into the outgoing bit stream. This bit stuffing is analogous to character stuffing, in

which a DLE is stuffed into the outgoing character stream before DLE in the data

 Algorithm:-

Step 1: Read frame length n

Step 2: Repeat step (3 to 4) until i<n (Read values in to the input frame (0’sand 1’s) i.e.

Step 3: Initialize i =0;

Step 4: read a[i] and increment i.

Step 5: Initialize i=0, j=0, count =0.

Step 6: repeat step (7 to 22) until i<n.

Step 7: If a[i] == 1 then.

Step 8: b[j] = a[i]

Step 9: Repeat step (10 to 18) until (a[k] =1 and k<n and count <5).

Step 10: Initialize k=i+1;

Step 11: Increment j and b[j] = a[k];

Step 12: Increment count.

Step 13: if count =5 then.

Step 14: increment j.

Step 15: b[j] =0.

Step 16: end if .

Step 17: i=k.

Step 18: Increment k.

Step 19: else

Step 20: b[j] = a[i]

Step 21: end if

Step 22: Increment I and j.

Step 23: Print the frame after bit stuffing.

Step 24: Repeat step (25 to 26) until i< j.

Step 25: Print b[i].

Step 26: Increment i.

End.

Program: - // BIT Stuffing program.

#include<stdio.h>

#include<string.h>

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

void main()

{

 int a[20],b[30],i,j,k,count,n;

printf("Enter Frame length :");

//gets(n);

scanf("%d",&n);

printf("Enter input frame (0's &Â 1's only): ");

for(i=0;i<n;i++)

scanf("%d",&a[i]);

 i=0;

count=1;

j=0;

while(i<n)

 { //count=0;

 if(a[i]==1)

 {

 b[j]=a[i];

 for(k=i+1;a[k]==1 && k<n && count<5;k++)

 {

j++;

 b[j]=a[k];

 count++;

if(count==5)

 {

 j++;

 b[j]=0;

 }

 i=k;

 }

 }

 else

 {

 b[j]=a[i];

 }

 i++;

 j++;

count=1;

}

printf("After stuffing the frame is:");

printf("01111110");

for(i=0;i<j;i++)

printf("%d",b[i]);

printf("01111110");

}

Result: - The output is displayed on the screen after stuffing bits into the input.

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

(ii) Character stuffing.

Aim: Write a program to perform character stuffing in C language and execute the same and

display the result.

Theory: The framing method gets around the problem of resynchronization after an error by

having each frame start with the ASCII character sequence DLE STX and the sequence DLE

ETX. If the destination ever losses the track of the frame boundaries all it has to do is look for

DLE STX or DLE ETX characters to figure it out. The data link layer on the receiving end

removes the DLE before the data are given to the network layer. This technique is called

character stuffing.

Algorithm:
Begin

Step 1: Initialize i and j as 0.

Step 2: Declare n and pos as integer and a[20], b[50], ch as character.

Step 3: Read the string a.

Step 4: Find the length of the string n, i.e., n-strlen(a).

Step 5: Read the position, pos.

Step 6: if pos > n then.

Step 7: Print invalid position and read again the position, pos.

Step 8: End if.

Step 9: Read the character, ch.

Step 10: Initialize the array b, b[0…5] as ’d’, ’l’, ’e’, ’s’ ,’t’ ,’x’ respectively.

Step 11: j=6;

Step 12: Repeat step[(13to22) until i<n.

Step 13: if i==pos-1 then

Step 14: initialize b array, b[j],b[j+1]…b[j+6] as ‘d’, ‘l’, ‘e’ ,’ch, ’d’, ‘l’, ‘e’ respectively.

Step 15: Increment j by 7, i.e., j=j+7.

Step 16: end if

Step 17: if a[i]==’d’ and a[i+1]==’l’ and a[i+2]==’e’ then

Step 18: Initialize array b, b[13…15]=’d’, ‘l’, ‘e’ respectively.

Step 19: Increment j by 3, i.e., j=j+3.

Step 20: end if.

Step 21: b[j]=a[i]

Step 22: Increment I and j.

Step 23: Initialize b array, b[j],b[j+1]…b[j+6] as ‘d’, ‘l’, ‘e’ ,’e’, ‘t’, ‘x’,‘\0’respectively.

Step 24: Print frame after stuffing.

Step 25: Print b.

End.

Program: //PROGRAM FOR CHARACTER STUFFING.

#include<stdio.h>

#include<string.h>

void main()

{

int i=0,j=0,n,pos;

char a[20],b[50],ch;

printf("enter string\n");

scanf("%s",&a);

n=strlen(a);

b[0]='d';

b[1]='l';

b[2]='e';

b[3]='s';

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

b[4]='t';

b[5]='x';

j=6;

while(i<n)

{

if(a[i]=='d' && a[i+1]=='l' && a[i+2]=='e')

{

b[j]='d';

b[j+1]='l';

b[j+2]='e';

j=j+3;

}

b[j]=a[i];

i++;

j++;

}

b[j]='d';

b[j+1]='l';

b[j+2]='e';

b[j+3]='e';

b[j+4]='t';

b[j+5]='x';

b[j+6]='\0';

printf("\nframe after stuffing:\n");

printf("%s",b);

}

Result: The output is displayed on the screen after stuffing characters into the input.

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

Program 2

Aim: Write a program for Distance Vector Algorithm to find suitable path for transmission.

Theory:

Routing algorithm is a part of network layer software which is responsible for

deciding which output line an incoming packet should be transmitted on. If the subnet

uses datagram internally, this decision must be made anew for every arriving data

packet since the best route may have changed since last time. If the subnet uses virtual

circuits internally, routing decisions are made only when a new established route is being

set up. The latter case is sometimes called session routing, because a rout remains in

force for an entire user session (e.g., login session at a terminal or a file).

Routing algorithms can be grouped into two major classes: adaptive and non-adaptive.

non-adaptive algorithms do not base their routing decisions on measurement or

estimates of current traffic and topology. Instead, the choice of route to use to get from I to J

(for all I and J) is compute in advance, offline, and downloaded to the routers when the

network ids booted. This procedure is sometime called static routing.

Adaptive algorithms, in contrast, change their routing decisions to reflect changes in the

topology, and usually the traffic as well. Adaptive algorithms differ in where they get

information (e.g., locally, from adjacent routers, or from all routers), when they change

the routes (e.g., every ∆T sec, when the load changes, or when the topology changes), and

what metric is used for optimization (e.g., distance, number of hops, or estimated transit

time).

Two algorithms in particular, distance vector routing and link state routing are the most

popular. Distance vector routing algorithms operate by having each router maintain a

table (i.e., vector) giving the best known distance to each destination and which line to

get there. These tables are updated by exchanging information with the neighbors.

In distance vector routing, each router maintains a routing table indexed by, and containing

one entry for, each router in subnet. This entry contains two parts: the preferred outgoing line

to use for that destination, and an estimate of the time or distance to that destination. The

metric used might be number of hops, time delay in milliseconds, total number of packets

queued along the path, or something similar.

The router is assumed to know the “distance” to each of its neighbor. If the metric is hops,

the distance is just one hop. If the metric is queue length, the router simply examines each

queue. If the metric is delay, the router can measure it directly with special ECHO

packets hat the receiver just time stamps and sends back as fast as possible.

Program:

#include<stdio.h>

struct node

{

unsigned dist[20];

unsigned from[20];

}rt[10];

void main()

{

int costmat[20][20],source,desti;

int nodes,i,j,k,count=0;

printf("\nEnter the number of nodes : ");

scanf("%d",&nodes);//Enter the nodes

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

printf("\nEnter the cost matrix :\n");

for(i=0;i<nodes;i++)

for(j=0;j<nodes;j++)

 {

 scanf("%d",&costmat[i][j]);

 costmat[i][i]=0;

 rt[i].dist[j]=costmat[i][j];

 rt[i].from[j]=j;

 }

for(i=0;i<nodes;i++)

{

 printf("\n\n For router %d\n",i);

 for(j=0;j<nodes;j++)

printf("\t\nnode %d via %d Distance%d",j,rt[i].from[j],rt[i].dist[j]);

 }

do

{

 count=0;

 for(i=0;i<nodes;i++)

 for(j=0;j<nodes;j++)

 if(i!=j)

 for(k=0;k<nodes;k++)

 if(rt[i].dist[j]>rt[i].dist[k]+rt[k].dist[j])

 {

 rt[i].dist[j]=rt[i].dist[k]+rt[k].dist[j];

 rt[i].from[j]=rt[i].from[k];

 count++;

 }

}while(count!=0);

for(i=0;i<nodes;i++)

{

 printf("\n\n For router %d\n",i+1);

for(j=0;j<nodes;j++)

printf("\t\nnode%d via %d Distance %d",j+1,rt[i].from[j]+1,rt[i].dist[j]);

}

printf("\n\n");

}

Result: -

 ./a.out dist.c

Enter the number of nodes 3

Enter the cost matrix

0 3 5

3 0 2

5 2 0

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

Program 3

Aim: Implement Dijkstra’s algorithm to compute the shortest path.

Theory:
In order to transfer packets from a source host to the destination host, the network layer must

determine the path or route that the packets are to follow. This is the job of the network layer

routing protocol. As the heart of any routing protocol is the routing algorithm that determines

the path for a packet from source router to destination router. Given a set of router, with

links connecting the routers, a routing algorithm finds a good path from source router to

destination router.

Dijkstra’s method of computing the shortest path is a static routing algorithm. It involves

building a graph of the subnet, with each node of the graph representing a router and each arc

representing a communication line or a link. To find a route between a pair of routers, the

algorithm just finds the shortest path between them on the graph.

Dijkstra’s algorithm finds the solution for the shortest path problems only when all the edge-

weights are non-negative on a weighted, directed graph. In Dijkstra’s algorithm the metric

used for calculation is distance. Each node is labeled with its distance from the source node

along the best known path. Initially, no paths are known, so all nodes are labeled with

infinity. As the algorithm proceeds and path are found, the labels may change, reflecting

better paths. A label may either be tentative or permanent. Initially all nodes are tentative

and once it is discovered that the shortest possible path to a node is got it is made permanent

and never be changed.

Dijkstra’s Algorithm

1. Enter cost matrix C[][]. C[i][j] is the cost of going from vertex i to vertex j. If there is no

edge between vertices i and j then C[i][j] is infinity.

2. Array visited[] is initialized to zero.

 for(i=0;i<n;i++)

 visited[i]=0;

3. If the vertex 0 is the source vertex then visited [0] is marked as 1.

4. Create the distance matrix, by storing the cost of vertices from vertex 0 to n-1

from the source vertex 0.

 for(i=1;i<n;i++)

 distance[i]=cost[0][i];

Initially, distance of source vertex is taken as 0. i.e. distance[0]=0;

5. for(i=1;i<n;i++)

– Choose a vertex w, such that distance[w] is minimum and visited[w] is 0. Mark visited[w]

as 1.

– Recalculate the shortest distance of remaining vertices from the source.

– Only, the vertices not marked as 1 in array visited[] should be considered for

recalculation of distance. i.e. for each vertex

6. Stop the algorithm if, when all the nodes has been marked visited.

Below is an example which further illustrates the Dijkstra’s algorithm mentioned.

Consider a weighted graph as shown:

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

Here 0, 1, 2, 3 and 4 which are inside the circle are nodes of the graph, and the number

between them are the distances of the graph. Now using Dijkstra’s algorithm we can find the

shortest path between initial node and the remaining vertices. For this, the cost matrix of the

graph above is,

Program:
#include<stdio.h>

#include<conio.h>

#define INFINITY 99

#define MAX 10

#define startnode 0

void dijkstra(int cost[MAX][MAX],int n);

int main()

{

 int cost[MAX][MAX],i,j,n,u;

 printf("Enter no. of vertices:");

 scanf("%d",&n);

 printf("\nEnter the cost matrix:\n");

 for(i=0;i<n;i++)

 for(j=0;j<n;j++)

 scanf("%d",&cost[i][j]);

 dijkstra(cost,n);

 return 0;

}

void dijkstra(int cost[MAX][MAX],int n)

{

 int distance[MAX],pred[MAX];

 int visited[MAX],count, mindistance, nextnode, i, j;

 //initialize pred[],distance[] and visited[]

 for(i=0;i<n;i++)

 {

 distance[i]=cost[startnode][i];

 pred[i]=startnode;

 visited[i]=0;

 }

 distance[startnode]=0;

 visited[startnode]=1;

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

 count=1;

 while(count<n-1)

 {

 mindistance=INFINITY;

 //nextnode gives the node at minimum distance

for(i=0;i<n;i++)

 if(distance[i]<mindistance&&!visited[i])

 {

 mindistance=distance[i];

 nextnode=i;

 }

 //check if a better path exists through nextnode

visited[nextnode]=1;

 for(i=0;i<n;i++)

 if(!visited[i])

 if(mindistance+cost[nextnode][i]<distance[i])

 {

 distance[i]=mindistance+cost[nextnode][i];

 pred[i]=nextnode;

 }

 count++;

 }

//print the path and distance of each node

 for(i=0;i<n;i++)

 if(i!=startnode)

 {

 printf("\nDistance of node%d=%d",i,distance[i]);

 printf("\nPath=%d",i);

 j=i;

 do

 {

 j=pred[j];

 printf(" <-%d ",j);

 }while(j!=startnode);

 }

}

Output:

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

Program 4

Aim: For the given data, use CRC-CCITT polynomial to obtain CRC code. Verify the

program for the cases.

i) Without error. ii) With error.

Theory:
A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital

networks and storage devices to detect accidental changes to raw data. Blocks of data

entering these systems get a short check value attached, based on the remainder of a

polynomial division of their contents; on retrieval the calculation is repeated, and corrective

action can be taken against presumed data corruption if the check values do not match.

Example: To compute an n-bit binary CRC, line the bits representing the input in a row, and

position the (n+1)-bit pattern representing the CRC’s divisor (called a “polynomial”)

underneath the left-hand end of the row.

Start with the message to be encoded: 11010011101100

This is first padded with zeroes corresponding to the bit length n of the CRC.

Here is the first calculation for computing a 3-bit CRC:

11010011101100 000 INPUT RIGHT PADDED WITH ZERO BITS

1011 DIVISOR (4 BITS)

01100011101100 000 RESULT

If the input bit above the leftmost divisor bit is 0, do nothing. If the input bit above the

leftmost divisor bit is 1, the divisor is XORed into the input. The divisor is then shifted one

bit to the right, and the process is repeated until the divisor reaches the right-hand end of the

input row. Here is the entire calculation:

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

Since the leftmost divisor bit zeroed every input bit it touched, when this process ends the

only bits in the input row that can be nonzero are the n bits at the right-hand end of the row.

These n bits are the remainder of the division step, and will also be the value of the CRC

function (unless the chosen CRC specification calls for some post processing).

The validity of a received message can easily be verified by performing the above calculation

again, this time with the check value added instead of zeroes. The remainder should equal

zero if there are no detectable errors.

Program:
//crc can detect all single bit error, double bit, odd bits of error and burst error

#include<stdio.h>

#include<string.h>

#define N strlen(g)

char t[28],cs[28],g[]="10001000000100001";

int a,i,j;

void xor()

{

for(j = 1;j < N; j++)

cs[j] = ((cs[j] == g[j])?'0':'1');

}

void crc()

{

for(i=0;i<N;i++)

 cs[i]=t[i];

 do

{

 if(cs[0]=='1')

 xor();

 for(j=0;j<N-1;j++)

 cs[j]=cs[j+1];

 cs[j]=t[i++];

 }while(i<=a+N-1);

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

}

int main()

{

 printf("\nEnter data : ");

 scanf("%s",t);

 printf("\n--");

 printf("\nGeneratng polynomial : %s",g);

 a=strlen(t);

 for(i=a;i<a+N-1;i++)

 t[i]='0';

 printf("\n--");

 printf("\nModified data is : %s",t);

 printf("\n--");

 crc();

 printf("\nChecksum is : %s",cs);

 for(i=a;i<a+N-1;i++)

 t[i]=cs[i-a];

 printf("\n--");

 printf("\nFinal codeword is : %s",t);

 printf("\n--");

 printf("\nEnter received message ");

 scanf("%s",t);

 crc();

 for(i=0;(i<N-1) && (cs[i]!='1');i++);

 if(i<N-1)

 printf("\nError detected\n\n");

 else

 printf("\nNo error detected\n\n");

 printf("\n--\n");

 return 0;

 }

Output without error Output with error

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

Program 5

Aim: Implement Stop and Wait Protocol and Sliding Window Protocol in a C program and

execute the same and display the result.

(i) Stop and Wait Protocol

Theory:

If data frames arrive at the receiver site faster than they can be processed, the frames must

be stored until their use. Normally, the receiver does not have enough storage space,

especially if it is receiving data from many sources.

This may result in either the discarding of frames or denial of service. To prevent the receiver

from becoming overwhelmed with frames, we somehow need to tell the sender to slow down.

There must be feedback from the receiver to the sender.

The protocol we discuss now is called the Stop-and-Wait Protocol because the sender

sends one frame, stops until it receives confirmation from the receiver (okay to go ahead),

and then sends the next frame. We still have unidirectional communication for data

frames, but auxiliary ACK frames (simple tokens of acknowledgment) travel from the

other direction. We add flow control to our previous protocol.

Example:

Figure shows an example of communication using this protocol. It is still very simple. The

sender sends one frame and waits for feedback from the receiver.

When the ACK arrives, the sender sends the next frame. Note that sending two

frames in the protocol involves the sender in four events and the receiver in two events.

Program:

#include <stdio.h>

#include <stdlib.h>

#define RTT 4

#define TIMEOUT 4

#define TOT_FRAMES 7

enum {NO,YES} ACK;

int main()

{

int wait_time,i=1;

ACK=YES;

for(;i<=TOT_FRAMES;)

{

if (ACK==YES && i!=1)

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

{

printf("\nSENDER: ACK for Frame %d Received.\n",i-1);

}

printf("\nSENDER: Frame %d sent, Waiting for ACK...\n",i);

ACK=NO;

wait_time= rand() % 4+1;

if (wait_time==TIMEOUT)

{

printf("SENDER: ACK not received for Frame %d=>TIMEOUT Resending Frame...",i);

}

else

{

sleep(RTT);

printf("\nRECEIVER: Frame %d received, ACK sent\n",i);

printf("--");

ACK=YES;

i++;

}

}

return 0;

}

(ii) Sliding Window Protocol :

Theory:

Sliding Window:
In this protocol (and the next), the sliding window is an abstract concept that defines

the range of sequence numbers that is the concern of the sender and receiver. In other

words, the sender and receiver need to deal with only part of the possible sequence numbers.

The range which is the concern of the sender is called the send sliding window; the range that

is the concern of the receiver is called the receive sliding window. We discuss both here.

The send window is an imaginary box covering the sequence numbers of the data

frames which can be in transit. In each window position, some of these sequence numbers

define the frames that have been sent; others define those that can be sent. The

maximum size of the window is 2m-1 for reasons that we discuss later. In this chapter, we

let the size be fixed and set to the maximum value, but we will see in future chapters that

some protocols may have a variable window size.

 Figure shows a sliding window of size 15 (m =4). The window at any time

divides the possible sequence numbers into four regions.

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

 The first region, from the far left to the left wall of the window, defines the

sequence numbers belonging to frames that are already acknowledged. The sender does not

worry about these frames and keeps no copies of them. The second region, colored in Figure

defines the range of sequence numbers belonging to the frames that are sent and have an

unknown status. The sender needs to wait to find out if these frames have been received or

were lost. We call these outstanding frames.

 The third range, white in the figure, defines the range of sequence numbers

for frames that can be sent; however, the corresponding data packets have not yet

been received from the network layer. Finally, the fourth region defines sequence numbers

that cannot be used until the window slides.

 In Networking, Window simply means a buffer which has data frames that needs to be

transmitted. Both sender and receiver agrees on some window size. If window size=w then

after sending w frames sender waits for the acknowledgement (ack) of the first frame. As

soon as sender receives the acknowledgement of a frame it is replaced by the next frames to

be transmitted by the sender. If receiver sends a collective or cumulative

acknowledgement to sender then it understands that more than one frames are properly

received, for e.g.:- if ack of frame 3 is received it understands that frame 1 and frame 2 are

received properly.

Program:

#include <stdio.h>

#include <stdlib.h>

#define RTT 5

int main()

{

 int window_size,i,f,frames[50];

 printf("Enter window size: ");

 scanf("%d",&window_size);

 printf("\nEnter number of frames to transmit: ");

 scanf("%d",&f);

 printf("\nEnter %d frames: ",f);

 for(i=1;i<=f;i++)

 scanf("%d",&frames[i]);

 printf("\nAfter sending %d frames at each stage sender waits for ACK",window_size);

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

 printf("\nSending frames in the following manner....\n\n");

for(i=1;i<=f;i++)

 {

 if(i%window_size!=0)

 {

 printf("%d",frames[i]);

 }

 else

 {

 printf(" %d\n",frames[i]);

 printf("SENDER: waiting for ACK...\n\n");

 sleep(RTT/2);

 printf("RECEIVER: Frames Received, ACK Sent\n");

 printf("---\n");

 sleep(RTT/2);

 printf("SENDER:ACK received, sending next frames\n");

 }

 }

 if(f%window_size!=0)

 {

 printf("\nSENDER: waiting for ACK...\n");

 sleep(RTT/2);

 printf("\nRECEIVER:Frames Received, ACK Sent\n");

 printf("---\n");

 sleep(RTT/2);

 printf("SENDER:ACK received.");

 }

 return 0;

 }

Result:

 Both the protocols are implemented and executed and the result is displayed on the screen.

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

Program 6

Aim: Write a program for congestion control using leaky bucket algorithm in C language and

execute the same and display the result.

Theory:

Policing

1. Network monitors traffic flows continuously to ensure they meet their traffic contract.

2. The process of monitoring and enforcing the traffic flow is called policing.

3. When a packet violates the contract, network can discard or tag the packet giving it lower

priority

4. If congestion occurs, tagged packets are discarded first

5. Leaky Bucket Algorithm is the most commonly used policing mechanism

(i) Bucket has specified leak rate for average contracted rate

(ii) Bucket has specified depth to accommodate variations in arrival rate

(iii) Arriving packet is conforming if it does not result in overflow

Leaky Bucket algorithm can be used to police arrival rate of a packet stream

Leaky Bucket Algorithm

1. The above figure shows the leaky bucket algorithm that can be used to police the traffic

flow.

2. At the arrival of the first packet, the content of the bucket is set to zero and the last

conforming time (LCT) is set to the arrival time of the first packet.

3. The depth of the bucket is L+I, where l depends on the traffic burstiness.

4. At the arrival of the kth packet, the auxiliary variable X’ records the difference between

the bucket content at the arrival of the last conforming packet and the inter-arrival time

between the last conforming packet and the kth packet.

5. If the auxiliary variable is greater than L, the packet is considered as nonconforming,

otherwise the packet is conforming. The bucket content and the arrival time of the packet are

then updated.

Leaky Bucket Example: - The operation of the leaky bucket algorithm is illustrated in the

below figure.

1. Here the value I is four packet times, and the value of L is 6 packet times.

2. The arrival of the first packet increases the bucket content by four (packet times).

3. At the second arrival the content has decreased to three, but four more are added to the

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

bucket resulting in total of seven.

4. The fifth packet is declared as nonconforming since it would increase the content to 11,

which would exceed L+I (10).

5. Packets 7, 8, 9 and 10 arrive back to back after the bucket becomes empty. Packets 7, 8

and 9 are conforming, and the last one is nonconforming.

6. Non-conforming packets not allowed into bucket & hence not included in calculations.

Program: //leaky bucket program

#include<stdio.h>

#define bucketsize 1000

#define n 5

void bucketoutput(int *bucket,int op)

{

 if(*bucket > 0 && *bucket > op)

 {

 *bucket= *bucket-op;

 printf("\n%d-outputed remaining is %d",op,*bucket);

 }

 else if(*bucket > 0)

 {

 printf("\nRemaining data output = %d",*bucket);

 *bucket=0;

 }

}

int main()

{

 int op,newpack,oldpack=0,wt,i,j,bucket=0;

 printf("enter output rate");

 scanf("%d",&op);

 for(i=1;i<=n;i++)

 {

 newpack=rand()%500;

 printf("\n\n new packet size = %d",newpack);

 newpack=oldpack+newpack;

 wt=rand()%5;

 if(newpack<bucketsize)

 bucket=newpack;

CCN LAB 17ECL68

Dept. of E&CE, VSMSRKIT, Nipani

 else

 {

printf("\n%d = the newpacket and old pack is greater than bucketsize reject",newpack);

 bucket=oldpack;

 }

 printf("\nThe data in bucket = %d",bucket);

 printf("\n the next packet will arrive after = %d sec",wt);

 for(j=0;j<wt;j++)

 {

 bucketoutput(&bucket,op);

 sleep(1);

 }

 oldpack=bucket;

 }

 while(bucket>0)

 bucketoutput(&bucket,op);

 return 0;

}

Result: Thus the program is written and executed in C language for congestion control using

leaky bucket algorithm.

