
Game Balancing in Dominion: An Approach to Identifying Problematic Game
Elements

Cassandra Ford,1 Merrick Ohata2

1 Lafayette College
2 Johns Hopkins University

fordcb@lafayette.edu, mohata1@jhu.edu

Abstract

In the popular card game Dominion, the configuration of
game elements greatly affects the experience for players. If
one were redesigning Dominion, therefore, it may be use-
ful to identify game elements that reduce the number of vi-
able strategies in any given game configuration - i.e. elements
that are unbalanced. In this paper, we propose an approach
that assigns credit to the outcome of an episode to individ-
ual elements. Our approach uses statistical analysis to learn
the interactions and dependencies between game elements.
This learned knowledge is used to recommend elements to
game designers for further consideration. Designers may then
choose to modify the recommended elements with the goal of
increasing the number of viable strategies.

Introduction
Dominion is a popular deck-building game that has a set of
cards (distinct from a standard 52-card deck) as a collection
of game elements. Before a single game begins, the players
choose some number of the elements to include in the game,
and which to exclude. They collectively choose 10 elements
to be in the “Kingdom”, in addition to a static set of 7 ele-
ments which are always included (Copper, Silver, Gold, Es-
tate, Duchy, Province, Curse). Each player begins with their
own copy of the same deck (7 Copper and 3 Estates), and on
each turn they can “buy” elements from the kingdom. Those
elements are then incorporated into their deck and can then
be played on subsequent turns with the goal of acquiring vic-
tory points (Dom 2016). The Kingdom, then, has a great im-
pact on the number of viable strategies accessible to players
during gameplay, since gained elements affect what actions
may be taken by the player. We refer to a game configuration
to be a kingdom, and a game as a single simulation run with
that configuration.

When players buy or use elements, it affects the reward
a player will receive in their effort to win the game (in this
case, the number of victory points gathered). We can think
of elements as possessing individual reward distributions,
which are affected by the presence of other elements within
a configuration, since it is true for many games that the pres-
ence of certain elements impacts how well other elements

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

perform. This is similar, for example, to random resources
generated at the beginning of a Fortnite match or ranking of
a sprinter between heats - while an element may individu-
ally perform a certain way in one setting, in the presence of
other elements it may perform differently. We therefore aim
to model the overall distribution of each element individu-
ally across all situations, while also gaining insight into the
interactions between elements that affect the reward output.

When formulating a model, Dominion can be thought of
as a variation of an n-armed bandit problem. In this classic
problem, when a lever on the bandit is pulled, some reward
chosen from an unknown probabilistic distribution is given.
A strategy is defined as some function determining which
levers are pulled and the order to pull them in, and finding
an optimal strategy for the bandit is a common problem in
machine learning.

A typical method of solving this problem is learning the
reward distributions of each lever. In Dominion, each game
element can be thought of as one of the arms of this bandit
- and it is assumed that the goal of the game designers is
to create a set of game elements which enable numerous vi-
able strategies. A viable strategy is one that some intelligent
player could reasonably use to achieve the most reward over
its opponents. We reason that the maximum number of vi-
able strategies exists when each element is played an equal
number of times by an intelligent player over the course of
many individual games. It is not necessary that a viable strat-
egy include many elements, but rather that any element ex-
ists in some viable strategy. Thus the goal of our research is
to identify game elements that reduce the number of viable
strategies.

By learning the distribution of rewards of the game ele-
ments, we can identify elements that reduce the number of
viable strategies. In order to learn the distributions, we also
need to be able to assign credit (and thereby rewards) to ele-
ments based on their influence on the outcome of the game.
We can then flag certain elements as potential limiting fac-
tors in the number of viable strategies to the game designer.

We assume the goal of the game designers is to create
what is referred to as a ‘balanced’ game. For our research,
we interpret balance to mean having elements with similar
reward distributions, so that no element is dominant over
any other element. A better understanding of which ele-
ments negatively impact this aspect of play can help design-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

12744



ers adjust element mechanics to achieve a more balanced
game. Unfortunately, even with extensive playtesting, it can
be very difficult to predict and identify which elements will
create an unbalanced game environment before release to
the public. Better balance is often achieved by ”nerfing”,
”buffing”, or ”banning” certain game elements post release
(Izaak 2020; MTG 2021). We therefore aim to create a sys-
tem which will indicate to designers which elements may
need to be adjusted or removed.

Background
Other explorations on evaluating and balancing Dominion
have already been made. One by Ransom Winder utilized
several neural networks to evaluate the game state. His re-
search took into account different mechanics-based parame-
ters to help the networks improve strategic play. He also pro-
vided a general metric for evaluating cards by considering
the average number of copies in decks of the learned play-
ers over the course of games against a player with a baseline
strategy (Winder 2014). Another paper by Mahlmann, To-
gelius, and Yannakakis, included the testing of several AI
players against each other. In their model, they seek to iden-
tify configurations that maximize different metrics of bal-
ance and enjoyability. They found that certain cards inher-
ently balance the game regardless of strategy (Mahlmann,
Togelius, and Yannakakis 2012). We look to expand on this
research by examining the balancing influence of individual
elements and, critically, interactions between pairs of ele-
ments in an effort to help game designers understand the
underlying structure of their game.

In preparation for tackling this problem, Bayesian models
(Brownlee 2019) particularly interested us as an effective
way to represent the interactions between elements in the
system. We could model each game element as having some
reward distribution associated with it, modeling its positive
effect on a player’s outcome of the game. It is true of many
different games that elements have interactions with one an-
other, that the presence or use of an element A impacts the
effectiveness (or reward distribution) of another element B.
We thought of modeling this as a Bayesian Belief Network.

A Bayesian Belief Network operates by mapping a set of
conditional probabilities onto a graph, where nodes are ran-
dom variables and edges describe dependencies. We thought
modeling the set of game elements as a Bayesian Belief Net-
work could result in more detailed predictions for the reward
distributions and thus also predict how balanced a given con-
figuration will be, even if that configuration had not yet been
tested. This could help in discovering elements that are out
of balance, or which cause certain game configurations to
be out of balance. For instance, if the predicted influence
of an element is much lower than the other elements in a
large portion of possible game configurations, then it may
be reasonable to recommend this element for further consid-
eration.

We realized, however, that this model would ultimately
lead to an issue of parsing, since elements could easily have
a feedback effect and result in cyclic dependency. Cyclic
Bayesian Belief Networks have yet to be solved, as there
is no consistent way to parse such a network(Tulupyev and

Nikolenko 2005). Some workarounds exist, and in our case,
we would linearize the network by allowing each child
to only be parsed once. Because of these problems, the
Bayesian Belief network has not yet been incorporated into
much of the approach, although we speculate on its potential
uses throughout the paper.

We also discovered a Master’s thesis by Jon Vegard
Jansen and Robin Tollisen, which we believe to be the most
advanced dominion AI to date (Jansen and Tollisen 2014).
The Agent uses Monte Carlo Tree Search (MCTS) to make
decisions. Monte Carlo methods make decisions based on
a number of random playout simulations, and Monte Carlo
tree search does so while expanding the search tree to make
more informed decisions. We used this Agent to perform our
experiments, although the algorithm of choice is important
only in that it produces intelligent play.

Problems

It is necessary to be able to identify elements that greatly
reduce the number of viable strategies for any given game
configuration. We consider elements that do this to be prob-
lematic. Variance between elements’ reward distributions is
expected given the probabilistic nature of the game. How-
ever, it is undesirable to have distributions with centers well
above or well below the other reward distributions as that
would make certain elements unusable or dominant, both
of which would skew element usage away from the desired
state. We must be able to distinguish between these effects.
However, we must first be able to identify an element’s re-
ward for how much influence over the outcome it had for any
given episode before we can identify any as problematic.

It is also important to consider the fact that game elements
do not exist independently. We assume that by using one
element, it may affect other elements’ reward distributions.
This could lead to groups of elements which, while individ-
ually unproblematic, create feedback loops that dramatically
increase or decrease the reward obtained. These relation-
ships can take many forms, but by understanding the under-
lying interaction mapping of the elements, game designers
may be able to better decide how to make adjustments me-
chanically to balance the reward distributions. The discus-
sion of game elements as too powerful outside of the context
of their relationships to other game elements is meaningless,
as these elements are made powerful or weak by the con-
text of their use. We therefore must consider how to identify
these interactions in the solution. For this research, we only
address interactions between pairs of elements. However,
our approach described below can be used to test groups of
three or more elements, as it is conceivable that many ele-
ments could simultaneously interact with one another.

Since our goal is to identify and recommend elements
to developers that may reduce the number of viable strate-
gies, we must also have a metric to determine when we
know enough about the elements to claim problematic sta-
tus. Without such a mechanism, the system may falsely flag
elements as problematic due to variation in performance be-
tween configurations.

12745



Approach
All data was collected using an artificial player utilizing a
Monte Carlo Tree Search Algorithm (Jansen and Tollisen
2014) against a control opponent. The control used a strategy
referred to as “Big Money”, which only utilizes the static set
of elements that are always included (and which are beyond
the scope of our evaluation). The game ends when one of
several game-ending conditions has been reached, and the
player with more “points” in their deck is determined the
winner (Dom 2016).

For this domain, we determined that the reward distribu-
tions for elements could appropriately be interpreted as in-
fluence evaluations. For our purposes, we assume that the
distribution of average evaluations of all game elements is
approximately normally distributed, though the individual
reward distributions for each element individually need not
be. Because of our definition of an episode and the size of
our data set, we find it reasonable to assume that the mean
sampling distribution of evaluations for each element over
an episode is approximately normal. Thus most of our anal-
ysis consists of manipulating these sample means.

Experimental Design
A game configuration is defined by some subset of all game
elements. An episode is defined to be 30 individual game
simulations using the same game configuration. For data col-
lection, we ran many episodes using this virtual player.

In the real domain, a game configuration must contain ex-
actly 10 elements. To better limit the scope of the Agent and
to avoid problematic elements skewing other distributions
by their over-inclusion, we decided to modify this rule such
that a game configuration could contain any number of el-
ements. This allows the Agent to exclude certain elements
that may prevent furthering our understanding of other ele-
ments. It also allows the Agent to gain a cursory perspective
on the general performance of elements when many or all
are present.

Our first 200 episodes were run using a brute force ap-
proach for designing the game configurations. i.e., running
all possible configurations for some number of included el-
ements. For the last few episodes, we ran them using a Plan-
ner that attempted to gain more information on what we be-
lieved to be poorly understood elements. The effect of this
Planner is addressed further in the discussion.

Evaluation
We have a heuristic function to evaluate the influence of any
element over the outcome of the episode. This function is
key to the entire analysis, so we assume that it is in fact
a good evaluation of an element’s influence over the out-
come of an episode. We can then use this heuristic evalua-
tion to hypothesize on future configurations. This process is
sketched in Algorithm 1 below.

For our domain, we determined that the best measure of
influence would be based on the number of times an ele-
ment was used, as this corresponds directly to its effect on
the game. Since elements have no inherent influence over the
game if they aren’t used, this was the most common sense

approach. For each player, we thus included a term for the
number of times the element was used. We decided to divide
this value by the total number of turns taken to prevent the
artificial inflation of evaluations for elements that encourage
longer games. We also divide by the number of copies of the
element in the deck to take into account that additional uses
are possible with more copies. Additionally, since the goal
of the game is to gain victory points, we found it reasonable
to take the average of the uses-over-turns-per-copy value for
each player weighted by the number of victory points pos-
sessed at the conclusion of the game. The purpose of this
was to obtain a single value that would reflect the effective-
ness of an element in helping the player achieve the goal of
winning the game. For games where an element was used
many times by a player that did not gain a large portion of
the awarded points, the large number of uses will be appro-
priately scaled by the weighting; on the other hand, if an
element was used many times by a player who succeeded in
gaining the majority of points, the element’s role will also
be scaled by the weighting.

We also needed to address the issue of elements which
could be included in a configuration and added to a player’s
deck, but which cannot be used due to the nature of the ele-
ment (in particular, we needed a way to evaluate the element
Gardens). To account for this, we also include a weighting
based on how many copies of an element was added to the
winning player’s deck. In this way, no credit is assigned to
unplayable elements in the losing player’s deck, but is ac-
knowledged if contributing to victory.

In equation (1) below for E, the evaluation of a single
element for a game, si, ni, and pi are the number of victory
points, copies of the element in the deck, and uses of an
element respectively for player i over the course of a single
game. T is the total number of turns the game took. Note
that in the last expression, v = i of the winning player.

E =
s2

s1 + s2
(
p1

T · n1
) +

s2
s1 + s2

(
p2

T · n2
) +

sv
s1 + s2

(nv)

(1)
It is important to mention that for our experimental de-

sign, one of the players never plays elements nor includes
them in its deck, thus both ni and pi are zero for one of the
players i. In this case of a 0

0 , the undefined expression is
instead set to zero.

Hypothesis Generation
We accumulate data from many previous simulations and
build upon our knowledge of the elements. The accumulated
data is used to describe each element’s sample distribution
to estimate the true reward distribution of that element. We
also examine the relationships between these distributions to
determine if an interaction exists. These sample distributions
and the interactions define our hypothesis.

We assume that our hypotheses are accurate once the dif-
ference between the predicted distribution and the observed
reward reaches a lower threshold. If it is consistently reason-
able that the observed reward came from the predicted distri-
bution, we can be more confident in claiming that the flagged
elements are indeed problematic. In the future, the Bayesian

12746



Figure 1: µ of reward distributions without problematic elements

Algorithm 1: Hypothesize

Input: Episode metadata, predicted reward distribution
•Add data to database
•Using all accumulated data, find the distribution
of each element
•Do a t-test of each element against the set con-
taining every other element
•Do a t-test of each element pairing against the set
containing every other element
•Construct a new Hypothesis set as (Reward Dis-
tribution, Interaction Mapping, Problematic Ele-
ments)
•Plan the new set of game configurations based on
current Hypothesis set

Output: New Hypothesis Set, Set of Game Configurations

Belief Network (described more below) would provide valu-
able aid in forming the hypotheses, as it takes into account
the effect of elements on one another.

In order to identify whether an element is problematic,
we examine our current hypothesis. We assess the probabil-
ity that an element’s mean evaluation comes from the dis-
tribution of average evaluations from all other elements. If
the probability is below some threshold determined by the
game designer, it is flagged for further analysis. We can also
identify whether pairs of elements are problematic by run-
ning the same procedure on the average of the two elements
and treating it as a single entity. Since the average is a lin-
ear combination of two approximately normal random vari-
ables, this is a valid test. A similar approach can be taken

when considering trios or larger groups of elements as well,
though these groupings were not addressed in this research.

Algorithm 1 further explains the process described above
used to generate the new hypothesis, which is then used by
the Planner (described in the next section) to create a new
set of experiments to run.

Planning
In the real domain of Dominion, there are

(
24
10

)
different

game configurations for the base set alone and it is unreason-
able to attempt to play all of them. Additionally, there have
been numerous expansions released since the first edition of
the game, and it is unreasonable to attempt to play all of the
combinations available between them. We therefore created
a program determining new sets of game configurations to
test, which we called the Planner.

It is desirable to have a data set that reaches all corners of
the topography of the estimated function, so that given some
game configuration, we can be reasonably sure the algorithm
has a good understanding of that area. This is achieved by
having experiments in the same region as any given game
configuration. If two game configurations are very similar,
maybe having only a single element different between them,
we can be reasonably sure that the data from one will be
relevant to the other.

Given the large number of combinations associated with
our configuration set, it is impossible to fully explore ev-
ery possible combination. Therefore, based on the available
data, it is desirable to decide where poorly understood re-
gions of the estimation function are, and to run experiments
on game configurations in those regions.

12747



Figure 2: µ of reward distributions with all elements

The Planner selected configurations to include in subse-
quent testing by predicting the outcome of potential config-
urations and evaluating the soundness of the prediction. If
any of the distributions included in the configuration were
particularly ill-defined (due to high variance or little data,
for example), then it was determined to require further test-
ing.

Interactions
For identifying pairs of interacting elements, we perform a
two-sample t-test using the set of evaluations from game
configurations when only one of the two elements was
present and the set of evaluations when both elements were
present. This test is performed for each element in the pair.
Our null hypothesis is that the means of the two sets of data
will be equal. If we find the t-statistic to fall above or below
a certain threshold, we can say that there is an interaction be-
tween the elements. The results of this testing also implicitly
defines a Directed Graph (element A interacts with element
B → A → B) and lays the foundation for a Bayesian Be-
lief Network model of the interactions between elements.
Although this testing only addresses pairs of elements, we
can extend the same procedure to test interactions between
larger groups by considering each two-component partition
in the set.

In the future, the Bayesian Belief Network could be used
to more accurately predict the specific reward distribution
for an element in any given game configuration. The dis-
tributions of the interconnected game elements define a k-
dimensional reward distribution, where k is equal to the
number of game elements being considered. To more ac-

curately identify problematic elements, we consider this k-
dimensional space. The network could then help identify un-
desired peaks and valleys of this function by giving more
accurate assessments of specific reward distributions of el-
ements in conjunction with one another. This would render
the flagging of potentially problematic elements more dis-
criminant. It would also aid the discovery of unexplored re-
gions for the Planner, and also better identify when we do
not understand a region of the function well. This is because
it has more sophisticated parsing than our current naive ap-
proach. The Planner can then use the information gathered
by the network to generate new game configurations.

Results
Element Distributions
Based on the program data, the elements Witch and Bureau-
crat were both consistently flagged as problematic. The dra-
matic difference in evaluations of these two elements can
be easily observed in Figure 1. While all other elements fell
within a similar range of evaluation (or magnitude of influ-
ence) between near-zero and around 1.6 (see Figure 2), both
Bureaucrat and Witch consistently had scores that were four
or more times higher than the maximum in this range once
the scores began to converge.

Interaction Mapping
Our interaction mappings are represented as graphs. Fig-
ure 3 shows the interactions which were identified after 100
episodes, and Figure 4 illustrates the more refined set of
interactions identified by the conclusion of testing. In the
graphs, each node is a game element, and a directed edge

12748



Figure 3: Mapping after 100 episodes

Figure 4: Final Mapping

represents a relationship where the source affects the re-
lated node, which is either a positive or negative relation-
ship. We call a relationship problematic if either of the ad-
justed reward distributions is considered problematic using
the same test as individual elements. In the interaction map-
pings, problematic relationships are represented with a dot-
ted line and hollow arrow.

According to our data, the elements Bureaucrat and Gar-
dens have a positive relationship, with Bureaucrat raising
the average reward distribution of Gardens by over 7 stan-
dard deviations. This is an example of mechanical synergy
between elements.

Our most problematic elements, Bureaucrat and Witch,
have a negative relationship where Bureaucrat lowers the
reward for Witch. This is an instance where a problematic
interaction has more to do with the elements within the in-
teraction than the interaction itself.

Discussion
The primary discovery of our data is that the elements Bu-
reaucrat and Witch are much more powerful than the other
elements. We find our results to be reasonable for our col-
lection of game elements and based on our knowledge of
the domain and other player-sourced element evaluations
(markus 2021) (Gli 2020). If we exclude these problematic
elements, we also observe the elements Festival and Smithy
are well above the others (see Figure 2). While these two
elements were not considered problematic, given the inter-
connected nature of the domain, a game designer may wish
to further investigate these elements when considering ad-
justments to other problematic elements.

Our initial mapping is a lot more chaotic than our final
mapping, and we believe the mapping would continue to
narrow as more data was accumulated. It is our belief that
the interaction mapping, and an accurate Bayesian Belief
Network, will take far more data to converge than the rank-
ing of elements. The method itself does seem to be sound
and is identifying interactions that seem reasonable based
on the mechanics of the elements. In the aforementioned ex-
ample of Gardens and Bureaucrat, we find this interaction to
be reasonable given that Gardens gives a player points based
on the number of cards in that player’s deck and Bureaucrat
adds cards to the deck when used.

The network mapping could be helpful in use with the
Planner. By having a more accurate understanding of the
system as a whole, it can be used to find gaps in knowledge
more accurately than without one. While we weren’t able
to generate results of the Bayesian Belief Network in use,
it should be noted that cycles can (and frequently do) exist
in this mapping. As discussed in the introduction, resolving
cycles in Bayesian Belief Networks is an open problem, and
while workarounds exist, none are true solutions.

==

Potential Bias
There is a great deal of bias introduced into this data. We first
address the fact that all data was collected examining a set
of twelve elements, which may seem a relatively small sam-
ple. The primary reasoning behind this decision was simply
due to time constraints. The relatively rapid timeline for this
project from conception to completion made the implemen-
tation and testing of additional elements unfeasible. Accord-
ing to our understanding of the problem, however, the num-
ber of elements included should not be an issue, since each
element and pair of elements are only considered against
each other. Including more elements would make collect-
ing enough accurate data harder, but the data analysis would
remain fundamentally the same.

The Planner was introduced near episode 220, and the
movements in the distributions past those episodes speaks
to the introduced bias of the Planner (see Figures 1 and 2).
After episode 140, the evaluations of elements appear to sta-
bilize around constant values. However, after 220, the eval-
uations begin to move steadily away from this steady state.
This indicates that the way game configurations are selected
by the Planner affect the observed reward distributions, and

12749



is thus a source of bias. In future implementations of this
approach, any Planner should be carefully designed.

Our approach also assumes that one has access to large
amounts of intelligent play data. Unintelligent play would
not necessarily produce incorrect evaluations depending on
the heuristic evaluation function. However, in our domain,
an element with a high reward distribution is only as re-
warding as the player identifies it to be. In this domain, an
element can only be exploited; if a player does not choose
to use it, it has no inherent influence over an episode. This
creates a large bias problem. If there exists numerous viable
strategies but our player favors any single one in particular,
we may falsely identify elements as problematic, when in
fact it was the player causing this problem, not the elements.

We must finally consider the Player as a source of bias.
As previously asserted, game elements have no inherent in-
fluence on a game, and so if an element is not used it has
no influence, and receives no reward. If the player, for some
reason, decides not to use a powerful element, or instead pri-
oritizes a weak element, this could give a reward that may be
disproportionate to the true reward distribution. The player
we used used a Monte-Carlo search algorithm, and thus in-
cluded a random element. This made multiple simulations
of the same configuration meaningful, and gave the variance
that partially addresses this problem. All data must be con-
sidered in the context that the player is largely what makes
it accurate or inaccurate.

Future Work
Our work on this problem has led us to consider further work
in investigating recommendation systems for the game de-
signers. For this particular domain, the most obvious further
research would be to introduce the remainder of the base set
into the system with the possibility and intention of includ-
ing expansion sets as well. With this dramatically increased
element pool, the system would have greatly reduced bias in
its evaluations as it would take more elements into account.
We could also gain a better understanding of the complex in-
teractions between elements through our mapping, though,
as discussed above, this would require vast amounts of test-
ing. For this system, or an expanded iteration of it, we would
also like to investigate different planning approaches. As we
mentioned before, the Planner introduced a great deal of bias
into the system, thus looking for ways to minimize this effect
is a natural continuation.

Another further project would be the formulation and test-
ing of multiple heuristic evaluation functions. Due to time
constraints, we simply developed a function which we deter-
mined suited our purposes and used it for all of our evalua-
tions. We could also, however, test multiple related functions
in an effort to identify problematic elements in fewer itera-
tions by looking at many different metrics from play data.
In a similar vein, we could also explore measuring reward
according to an ideal other than balance in influence; for ex-
ample, we may wish to find cards and pairs which lead to ex-
tremely long turns or very short games. A related but equally
intriguing possibility is the evaluation of “balance” itself or
other desirable qualities over the course of a game, which
could lead to recommendations of enjoyable configurations

for players.

Conclusion
While designing a game, it is desirable to balance it such
that no game element restricts the number of viable strate-
gies available to an intelligent player. We developed a tool
to help identify elements that have this effect to aid in the
development process. The main improvements our system
could benefit from is a more well-rounded player, a more
comprehensive heuristic evaluation function, and a more in-
telligent Planner. The ability to assign credit to elements
within a complex interacting system and to identify interac-
tions between those elements is a well-studied problem. Our
approach may be applied to other domains with complex in-
teracting systems where the effect of elements is largely un-
known.

References
2016. Dominion 2nd Edition Rules.
https://www.riograndegames.com/wp-
content/uploads/2016/09/Dominion-2nd-Edition-Rules.pdf.
Accessed: 2021-12-28.
2020. Dominion Card Glicko. http://wiki.dominionstrategy.
com/index.php/Dominion Card Glicko. Accessed : 2021-
12-28.
2021. Banned and restricted cards Timeline.
https://mtg.fandom.com/wiki/Banned and restricted cards/
Timeline. Accessed: 2021-09-09.
Brownlee, J. 2019. A Gentle Intro-
duction to Bayesian Belief Networks.
https://machinelearningmastery.com/introduction-to-
bayesian-belief-networks/. Accessed : 2021-06-20.
Izaak. 2020. Fortnite: Patch 13.20 weapon buffs and
nerfs. https://www.sportskeeda.com/esports/news-fortnite-
weapon-buffs-nerfs. Accessed: 2021-09-09.
Jansen, J. V.; and Tollisen, R. 2014. An AI for dominion
based on Monte-Carlo methods. Ph.D. thesis, University of
Agder.
Mahlmann, T.; Togelius, J.; and Yannakakis, G. N. 2012.
Evolving card sets towards balancing dominion. In 2012
IEEE Congress on Evolutionary Computation. IEEE.
markus. 2021. Dominion Card Glicko.
https://docs.google.com/spreadsheets/d/1CaVOd1pgAgmjJ
HXPM1tVMVnlJOLDZaq8BxjW4I1NI1E. Accessed:
2021-12-28.
Tulupyev, A.; and Nikolenko, S. 2005. Directed Cycles
in Bayesian Belief Networks: Probabilistic Semantics and
Consistency Checking Complexity. In MICAI 2005: Ad-
vances in Artificial Intelligence, 214–223. ISBN 978-3-540-
29896-0.
Winder, R. K. 2014. Methods for approximating value func-
tions for the Dominion card game. Evol. Intell., 6(4): 195–
204.

12750


