
CS232 Section 7: Caches

Direct-mapped Caches

Recall that a cache is a fast memory device that contains a small subset of the data in main memory.
Cache data is arranged in blocks. We will initially consider caches where the block size is 1 byte, but
later we will consider larger block-sizes (to take advantage of spatial locality).

In a direct mapped cache, each memory address maps to a fixed location in the cache called the index.
Suppose the memory is byte addressable and addresses are n bits long. Thus main memory can hold 2n

bytes of data. Suppose the cache can hold 2m bytes of data, where m� n. The m least significant bits
of the address form the index, and the remaining n−m bits form the tag.

n−m bits m bits
(tag) (index)

Problem 1: Your friend suggests that the following scheme would be equally appropriate for a direct-
mapped cache: the m most significant bits form the index, the remaining n −m bits form the tag. Do
you agree? Justify your answer?

Problem 2 (a): A system has 1 GB of byte addressable memory and a 256 KB direct-mapped cache
(one byte per block). Identify two distinct memory addresses that map to the same location in the cache.

Problem 2 (b): Consider an array char a[400000] accessed as follows:

for(int i = 0; i < 100; ++i)

for(int j = 0; j < 400000; ++j)

a[j]++;

What is the pattern of hits and misses you would expect to see, assuming that the cache is devoted only
to the array a, and is initially empty?

1



CS232 Section 7: Caches

Large cache blocks

As we saw in the preceding example, a cache with one byte per block cannot take advantage of spatial
locality: when we access a[0], the neighboring array elements a[1], a[2], etc. are not loaded into the
cache automatically. (The only hits in the cache are because of temporal locality). To exploit spatial
locality, we allow cache blocks to hold several bytes (usually a power of two). On a cache miss, we load
an entire block of data into the cache.

Consider a direct mapped cache where the blocksize is 2b bytes and the cache holds 2m blocks. Once
again, suppose memory is byte addressable with n bit addresses. These are interpreted as follows:

n−m− b bits m bits b bits
(tag) (index) (block offset)

The index field identifies the block, the block offset field identifies the byte within the block, and the tag
field distinguishes between addresses that refer to different blocks but map to the same index.

Problem 3: Explain why the following scheme would not be appropriate for a direct-mapped cache:
the m least significant bits form the index, the n − m − b most significant bits form the tag, and the
remaining bits form the block offset.

Problem 4: A system has 1 GB of byte addressable memory and a 256 KB direct-mapped cache with
8 bytes per block. Consider an array int a[100000] accessed as follows (int = 4 bytes):

for(int i = 0; i < 100; ++i)

for(int j = 0; j < 100000; ++j)

a[j]++;

What is the pattern of hits and misses you would expect to see, assuming that the cache is devoted only
to the array a, and is initially empty?

2


